Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue, industry partners creating ’intelligent’ grinding process

05.05.2004


Researchers at Purdue University are working with industry to develop an "intelligent" system that could save U.S. companies $1 billion annually in manufacturing costs by improving precision-grinding processes for parts production.


Chengying Xu (left). a doctoral student in mechanical engineering at Purdue University, and Yung Shin, professor of mechanical engineering, review information on data acquisition and monitoring for a "computer numerical control" grinding machine, pictured in background. Commonly referred to as CNC machines, the grinders cost up to $1 million and are widely used in industry to manufacture parts. Shin is leading research work that uses artificial intelligence software to improve the precision of such CNC grinding machines, which potentially could yield annual savings of $1 billion for U.S. companies. (Purdue News Service photo/David Umberger)



"Precision grinding is currently an art that relies heavily on the experience and knowledge of employees who have been in the business for years," said Yung Shin, a professor of mechanical engineering who is leading the Purdue portion of the research. "The problem is that many factories don’t have enough of these very experienced people, so a lot of grinding processes are run under suboptimal conditions.

"Our system strives to enable relatively inexperienced employees to operate grinding machinery with the same precision as these rare, highly experienced workers."


The "intelligent optimization and control grinding processes" use artificial-intelligence software, which mimics how people think, in order to learn and adapt to changing conditions.

Shin has been working on the method for 15 years. He will present an overview of his work on May 12, during the Automation & Assembly Summit, May 10-12, at the American Airlines Training Facility in Fort Worth, Texas. The conference was organized by the Society of Manufacturing Engineers.

"We estimate that if this method is fully implemented in the United States, we could save about 10 percent of the cost of current grinding practices, which is a really conservative estimate," Shin said. "That adds up to about $1 billion per year in the U.S."

TechSolve Inc., in Cincinnati, is leading the team of industrial partners in a three-year, $6 million project funded through the National Institute of Standards and Technology’s Advanced Technology Program.

"Precision grinding is becoming increasingly important for the automotive, aerospace, medical-device and electronics industries," said Anil Srivastava, manager of manufacturing technology at TechSolve. "Grinding is often the final machining process for creating parts that require smooth surfaces and extremely fine tolerances."

Other industrial members of the team are Delphi Energy & Chassis Systems in Dayton, Ohio; Applied Grinding Technologies in Wixom, Mich.; and Landis Gardner in Waynesboro, Pa.

If successful, the process would save Delphi millions of dollars annually by increasing productivity, saving energy, reducing the number of grinding wheels needed, reducing scrap and improving the overall quality of parts, said David Yen, manager of advanced manufacturing engineering at Delphi.

"Going from the lab to real-world applications won’t be easy and will require a lot of hard work and diligence," Yen said. "By the end of the three-year time span, we will identify several pilot applications, all in automotive areas, and validate the methodology, and then we will extend the technology to other grinding applications."

The intelligent system will use a wealth of data collected by various sensors, as a given part is being ground. Then the method will apply advanced software, such as neural networks and genetic algorithms, to operate specialized "computer numerical control" grinding machines that cost up to $1 million apiece.

The machines, commonly referred to as CNC machines, are widely used in industry and are increasingly being equipped with sensors that provide information about the grinding process in real time. The machines use grinding wheels containing ceramic or diamond particles to apply a fine-finish surface to precision parts, and sometimes they are used to create a part from scratch.

"Ceramic parts, for example, cannot be machined, so they are created entirely with grinding," Shin said.

The sensors collect information about such details as forces exerted on bearings, speed, vibration and temperatures during various parts of the process.

"A lot of machines are now coming out with these sensors," Shin said. "The question is, ’what do you do with all of that information?’

"We capture that information in the software to establish a database that will be used to set the machine to optimal operating conditions."

Shin has demonstrated that his method works in small-scale applications, but he said it will be a challenge for the team to apply it on a large-scale industrial basis.

"It is high risk because we are going from the lab to full-scale industrial systems," he said. "That sort of endeavor is always difficult because the magnitude of complexity in industry is much greater than in the lab."

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Yung C. Shin, (765) 494-9775, shin@ecn.purdue.edu
Anil Srivastava (513)948-2004, srivastava@techsolve.org
David Yen, (937)455-9259, david.w.yen@delphi.com
NIST Contact, Michael Baum, (301) 975-2763, michael.baum@nist.gov
Purdue News Service: (765) 494-2096; purduenews@purdue.edu



Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/2004/040504.Shin.grinding.html

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>