Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia/UNM self-assembly process forms durable nanocrystal arrays and independent nanocrystals

27.04.2004


NOW, SIT UP: Jeff Brinker (left) and Hongyou Fan observe satisfactory fluorescence by their well-trained nanocrystals in water solution. The dark vial holds gold nanocrystals; the orange and green are semiconductor nanocrystals. (Photo by Randy Montoya)


Top image: ordered gold nanocrystal packed inside silica. Electron diffraction pattern (left corner image) and high-resolution image (right corner) confirmed the nanostructure and gold nanocrystals. Bottom image: self-assembled, well-shaped gold nanocrystal/silica arrays.


Possible uses include biological labeling, laser light, catalysts, memory storage, and relief for physicists

A wish list for nanotechnologists might consist of a simple, inexpensive means - actually, any means at all - of self-assembling nanocrystals into robust orderly arrangements, like soup cans on a shelf or bricks in a wall, each separated from the next by an insulating layer of silicon dioxide.

The silica casing could be linked to compatible semiconductor devices. The trapped nanocrystals might function as a laser, their frequency dependent on their size, or as a very fine catalyst with unusually large surface area, or perhaps a memory device tunable by particle size and composition.



Or perhaps the technologist might want to stop nanocrystals from clumping. Agglomeration prevents them from being used as light-emitting tagging mechanisms to track cancer cells in the body and from being used in light-emitting devices needed for solid state lighting.

In this week’s journal Science, researchers at the National Nuclear Security Administration’s Sandia National Laboratories and the University of New Mexico describe a simple, commercially feasible method for doing both these things.

"The paper overcomes barriers to using nanocrystals routinely," said Jeff Brinker, Sandia Fellow and UNM chemical engineering professor, who with Sandia’s Hongyou Fan led the self-assembling effort. "The question in nanotechnology isn’t ’where’s the beef,’ it’s ’where’s the connectors’? How does one make connections from the macroscale to the nanoscale? This question lies at the heart of nanotechnology."

The self-assembly approach developed by the SNL/UNM teams allows nanocrystal arrays to be integrated into devices using standard microelectronic processing techniques, bridging huge gaps in scale.

Said IBM staff researcher Chuck Black at T. J. Watson Research Center in Yorktown Heights, NY, "One thing that’s nice is that these materials are hard materials. Often they come with an organic surfactant layer that makes it difficult to process materials, like a kind of grease. This material is embedded in oxide. It sounds like a neat thing and a new approach." The Sandia/UNM approach scrubs the surfactants with an ozone compound.

"Also, quantum dots can be important for biolabeling and biosensing," said Fan, who initiated the effort to use the nanocrystals for those purposes. "The beauty of our approach is that it makes these quantum dots both water-soluble and biocompatible, two essential qualities if we want to use them for in vivo imaging. The functional organic groups on the quantum dots can link with a variety of peptides, proteins, DNA, antibodies, etc. so that the dots can bind to and help locate targets like cancer cells, a critical issue in biomedicine."

Sandia has applied for a patent on this approach, which should aid attempts at several major universities to identify individual cancer cells before they increase in number.

(Researchers have found that at the nanoscopic realm, changing merely the size of a material changes the frequency it emits when ’pumped’ by outside energy; thus, quantum dots of particular sizes and material will emit at predictable frequencies, which makes them useful adjuncts when bound to molecules created to bind to particular cancer molecules.)

The process uses a simple surfactant (similar to dishwashing soap) to surround the nanocrystals - in this case, made of gold - to make them water soluble. Further processing involving silica causes the gold nanocrystals to arrange themselves within a silica matrix in a lattice - a kind of artificial solid with properties that can be adjusted through control of nanocrystal composition, diameter, properties of the surfactant, and/or stabilizing ligands used in formation of the water soluble nanocrystals.

The robust 3-D solids, which are stable indefinitely, demonstrate the incorporation of nanocrystalline arrays into device architectures.

A further use allows physicists to go beyond modeling to determine how current scales with voltage in nanodevices. "Before," says Brinker, "there was no way to make precisely ordered 3-D nanocrystalline solids, integrate them in devices, and characterize their behavior. There was no theoretical model. How does the current decide which way to hop between crystals?"

The new material can be used as an artificial solid to test out theories. "It should be a dream for physicists; they don’t just have to model anymore," said Brinker.

A kind of choreographed transmission possibility exists with the so-called "coulomb blockade," he said: No current is passed at low voltages because each crystal is separated by a thin (several nanometer thick) layer of silica dioxide, creating an insulator between the stored charges. Each nanocrystal charges separately. "This could be configured into a flash memory," said Brinker, "with a huge number of charges stored in an array of nodes."

Researchers at UNM’s Center for High Technology Materials performed experiments to establish the current/voltage scaling characteristics of the gold/silica arrays as a function of temperature. Sandia researcher Tim Boyle made and provided nanocrystal semiconductor (cadmium selinide) quantum dots.

Neal Singer | Sandia!
Further information:
http://www.sandia.gov/news-center/news-releases/2004/micro-nano/nanotoolcase.html

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>