Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Splitting Of White Light

26.04.2004


Moscow scientists have managed to do simply and inexpensively something which normally proves complicated and expensive. The concept thought out and then implemented is a device which allows you to check the quality of ground and polished surfaces with unprecedented precision and rapidity and to detect every single defect of such surfaces. The effort has been funded by both the Russian Foundation for Basic Research and the Foundation for Promotion of Small-Size Enterprises in Research and Technical Areas.



The source of light for contemporary devices for the check of the quality of grinded surfaces are lasers, which are not cheap, but the correct interpretation of measurement results could be produced only by a specialist with extensive experience and intuition. The fact is that the interference acquired in this case does not allow to identify the type of defect – be it convexity or concavity. Now the situation can drastically change. The laser turns out to be successfully replaced by a common white light bulb, and intuition will not be needed at all. Therefore, the device will provide distinct results at the output, and there will be no need to guess what defects exist on the mirror surface.

The new device is called “digital interferometer with incoherent source”. The device was invented and manufactured by the specialists of the Moscow Physical & Engineering Institute (State University), Moscow State Engineering University STANKIN and Research-and-Production Association “Energomekhanika” with financial support of the Russian Foundation for Basic Research and the Foundation for promotion of small-size enterprises in research and technical areas. The project was headed by Nikolai Vlasov, Professor, Doctor of Technical Sciences.


“The device action is based on interference of common white light (and this is reflected in its name). The essence of the work is as follows, says Professor Vlasov. The beam of light from one source is split into two absolutely identical beams. They are called the reference one and the object one. One of them is directed at the mirror which is initially of high-quality. The other is directed at the object under consideration, the distances to the object being equal. That is also the mirror, the surface quality of which should also be checked for concavities and convexities, and measured them, if any. If the “ heights” or “hollows” are too extensive and exceed the allowable value – the mirror is culled, if the defects are nonexistent or insignificant – the mirror is permitted for work.”

However, the question arises how the defects can be measured? So, both beams are reflected, each from its mirror. Then they are joined with the help of a semitransparent mirror to see what would turn out. Each of the beams has passed its way, the difference between the ways being the deflection of the object surface height from flat surface: if the beam hits a concavitiy, the length of its way increases, if it hits a convexity – its way decreases by the height of the convexity.

If the difference is divisible by the length of the light length, it intensifies – this phenomenon is called interference. If not – one beam extinguishes the other. The so-called fringe pattern is obtained – i.e. light and dark bands. Their number equals the number of times the light wave-length “goes into” the difference of ways. As the light source is normally the laser beam of a certain wave-length, this distance can be easily calculated. Nevertheless – and this is very important – the position of the bands would not help to determine whether the way passed by the beam reflected from the objects was longer or shorter. That is, if the mirror is convex or, on the contrary, concave.

For this purpose, the operates has to rely upon his/her experience and intuition. For example, when polishing the mirror, the pressure is higher at the middle of it – that means that the “relief drop” can be expected in that area. The sides of the mirror experience lower pressure - that means that convexities can be found there. That cannot be expressed in numbers.

That particular task can be fulfilled by a new device. If the lengths of the ways gone by light are absolutely identical, then regardless of the its wave-length, interference occurs upon overlapping of identical beams – since the difference of legths turns out to equal zero. The interferogram shows bright contrast band surrounded by the so-called black fringe – it is called the zero order band. That means that the only thing to be done is to make the two ways of two beams equal. To this end, it is sufficient to slightly shift the “correct” flat sample mirror at a certain distance in the known direction – either closer or farther away. That is performed by a special mechanism.

So, the method is as follows: the light goes in two beams, the fringe pattern is recorded – i.e. it is photographed, digitized and the zero order interference band is input in the computer memory. Then the mirror is relocated by one step and the procedure is repeated. The mirror is shifted to and fro. Several step-by-step images are acquired – i.e. a series of interference bands is obtained, processed and summed up. As a result, the answer if obtained in numbers whether the way length of the beam reflected from the sample mirror is longer or shorter that that of its twin reflected from the mirror that is the object of investigation. Therefore, the mirror quality has been checked. This method is very simple and precise.

“Certainly, our method is not deprived of drawbacks, says Nikolai Vlasov. For example, it cannot compete with the laser one if a nonstationary object needs to be investigated – we require some time. However, our method has no equal for an enormous number of common measurements and polishing quality control.”

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>