Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Splitting Of White Light

26.04.2004


Moscow scientists have managed to do simply and inexpensively something which normally proves complicated and expensive. The concept thought out and then implemented is a device which allows you to check the quality of ground and polished surfaces with unprecedented precision and rapidity and to detect every single defect of such surfaces. The effort has been funded by both the Russian Foundation for Basic Research and the Foundation for Promotion of Small-Size Enterprises in Research and Technical Areas.



The source of light for contemporary devices for the check of the quality of grinded surfaces are lasers, which are not cheap, but the correct interpretation of measurement results could be produced only by a specialist with extensive experience and intuition. The fact is that the interference acquired in this case does not allow to identify the type of defect – be it convexity or concavity. Now the situation can drastically change. The laser turns out to be successfully replaced by a common white light bulb, and intuition will not be needed at all. Therefore, the device will provide distinct results at the output, and there will be no need to guess what defects exist on the mirror surface.

The new device is called “digital interferometer with incoherent source”. The device was invented and manufactured by the specialists of the Moscow Physical & Engineering Institute (State University), Moscow State Engineering University STANKIN and Research-and-Production Association “Energomekhanika” with financial support of the Russian Foundation for Basic Research and the Foundation for promotion of small-size enterprises in research and technical areas. The project was headed by Nikolai Vlasov, Professor, Doctor of Technical Sciences.


“The device action is based on interference of common white light (and this is reflected in its name). The essence of the work is as follows, says Professor Vlasov. The beam of light from one source is split into two absolutely identical beams. They are called the reference one and the object one. One of them is directed at the mirror which is initially of high-quality. The other is directed at the object under consideration, the distances to the object being equal. That is also the mirror, the surface quality of which should also be checked for concavities and convexities, and measured them, if any. If the “ heights” or “hollows” are too extensive and exceed the allowable value – the mirror is culled, if the defects are nonexistent or insignificant – the mirror is permitted for work.”

However, the question arises how the defects can be measured? So, both beams are reflected, each from its mirror. Then they are joined with the help of a semitransparent mirror to see what would turn out. Each of the beams has passed its way, the difference between the ways being the deflection of the object surface height from flat surface: if the beam hits a concavitiy, the length of its way increases, if it hits a convexity – its way decreases by the height of the convexity.

If the difference is divisible by the length of the light length, it intensifies – this phenomenon is called interference. If not – one beam extinguishes the other. The so-called fringe pattern is obtained – i.e. light and dark bands. Their number equals the number of times the light wave-length “goes into” the difference of ways. As the light source is normally the laser beam of a certain wave-length, this distance can be easily calculated. Nevertheless – and this is very important – the position of the bands would not help to determine whether the way passed by the beam reflected from the objects was longer or shorter. That is, if the mirror is convex or, on the contrary, concave.

For this purpose, the operates has to rely upon his/her experience and intuition. For example, when polishing the mirror, the pressure is higher at the middle of it – that means that the “relief drop” can be expected in that area. The sides of the mirror experience lower pressure - that means that convexities can be found there. That cannot be expressed in numbers.

That particular task can be fulfilled by a new device. If the lengths of the ways gone by light are absolutely identical, then regardless of the its wave-length, interference occurs upon overlapping of identical beams – since the difference of legths turns out to equal zero. The interferogram shows bright contrast band surrounded by the so-called black fringe – it is called the zero order band. That means that the only thing to be done is to make the two ways of two beams equal. To this end, it is sufficient to slightly shift the “correct” flat sample mirror at a certain distance in the known direction – either closer or farther away. That is performed by a special mechanism.

So, the method is as follows: the light goes in two beams, the fringe pattern is recorded – i.e. it is photographed, digitized and the zero order interference band is input in the computer memory. Then the mirror is relocated by one step and the procedure is repeated. The mirror is shifted to and fro. Several step-by-step images are acquired – i.e. a series of interference bands is obtained, processed and summed up. As a result, the answer if obtained in numbers whether the way length of the beam reflected from the sample mirror is longer or shorter that that of its twin reflected from the mirror that is the object of investigation. Therefore, the mirror quality has been checked. This method is very simple and precise.

“Certainly, our method is not deprived of drawbacks, says Nikolai Vlasov. For example, it cannot compete with the laser one if a nonstationary object needs to be investigated – we require some time. However, our method has no equal for an enormous number of common measurements and polishing quality control.”

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>