Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot device dusts potential bombs for finger prints

20.04.2004


Police who need to dust suspicious packages for fingerprints could someday rely on a robotic device to do this dangerous work.


Bomb disposal robot with RAFFE attachment
Image: Kristian Dixon


Finger print samples obtained by RAFFE
Image: Kristian Dixon



The device, developed by scientists from U of T and the University of Calgary, offers a safe way to collect fingerprint evidence from packages that might be too dangerous for a human to approach. A study describing the development of the device, called a Robot Accessory for Fuming Fingerprint Evidence (RAFFE), appears in the March 2004 issue of the Journal of Forensic Sciences. "With the recent terrorist threats, police would want to collect as much evidence as possible," says lead author Kristian Dixon, a third-year U of T engineering science student. "But if a bomb were to go off while an officer was manually dusting the package, he could either lose his hands or his life."

Currently, police robots simply destroy suspicious packages - along with any fingerprint evidence. RAFFE consists of a small box with a heating element, cartridge of Superglue and short pipe. Using remote controls, police direct the robot to the package and heat the Superglue in the box. The glue produces fumes that are piped towards the package. The fumes, containing cyanoacrylate, react with the oils and moisture in the fingerprints, turning them white. The fingerprints can then be photographed using the robot’s high-definition camera prior to the safe disposal of the package. The study was funded by the Natural Sciences and Engineering


CONTACT:

Kristian Dixon, Division of Engineering Science, Faculty of Applied Science and Engineering, ph: (519) 884-5142 x364 or (519) 573-5152; e-mail: kristian.dixon@utoronto.ca

U of T Public Affairs, ph: (416) 978-6974; e-mail: nicolle.wahl@utoronto.ca

Nicolle Wahl | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/bin5/040419a.asp

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>