Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot device dusts potential bombs for finger prints

20.04.2004


Police who need to dust suspicious packages for fingerprints could someday rely on a robotic device to do this dangerous work.


Bomb disposal robot with RAFFE attachment
Image: Kristian Dixon


Finger print samples obtained by RAFFE
Image: Kristian Dixon



The device, developed by scientists from U of T and the University of Calgary, offers a safe way to collect fingerprint evidence from packages that might be too dangerous for a human to approach. A study describing the development of the device, called a Robot Accessory for Fuming Fingerprint Evidence (RAFFE), appears in the March 2004 issue of the Journal of Forensic Sciences. "With the recent terrorist threats, police would want to collect as much evidence as possible," says lead author Kristian Dixon, a third-year U of T engineering science student. "But if a bomb were to go off while an officer was manually dusting the package, he could either lose his hands or his life."

Currently, police robots simply destroy suspicious packages - along with any fingerprint evidence. RAFFE consists of a small box with a heating element, cartridge of Superglue and short pipe. Using remote controls, police direct the robot to the package and heat the Superglue in the box. The glue produces fumes that are piped towards the package. The fumes, containing cyanoacrylate, react with the oils and moisture in the fingerprints, turning them white. The fingerprints can then be photographed using the robot’s high-definition camera prior to the safe disposal of the package. The study was funded by the Natural Sciences and Engineering


CONTACT:

Kristian Dixon, Division of Engineering Science, Faculty of Applied Science and Engineering, ph: (519) 884-5142 x364 or (519) 573-5152; e-mail: kristian.dixon@utoronto.ca

U of T Public Affairs, ph: (416) 978-6974; e-mail: nicolle.wahl@utoronto.ca

Nicolle Wahl | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/bin5/040419a.asp

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>