Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke engineers fabricating polymer ’nanobrushes’ and other ’smart’ molecule-sized structures

31.03.2004


Engineers from Duke University have described progress building so-called "smart nanostructures," including billionths-of-a-meter-scale "nanobrushes" that can selectively and reversibly sprout from surfaces in response to changes in temperature or solvent chemistry.



In talks delivered during the March 28-April 1 at the American Chemical Society annual meeting in Anaheim, researchers from Duke’s Pratt School of Engineering also told how they are using an atomic force microscope to create reprogrammable "nanopatterns" of large biologically-based molecules that could potentially serve to analyze the protein contents of individual cells, among other uses.

The molecules are reprogrammable in the sense that they could be activated, deactivated, and then activated again for another use. They could serve as analytical tools because they could capture and isolate proteins of interest from complex mixtures.


The molecular dimensions of this work -- at the billionths-of-a-meter scale ("nano" means billionths) -- "introduces the concept of scaling-down chemistries to very small lengths," said Stefan Zauscher, a Duke assistant professor of mechanical engineering and materials science.

Zauscher was an organizer of a society symposium called "Smart Polymers on Colloids and Surfaces. "Smart" polymers are long-chained molecules that can reversibly change their conformations as well as reversibly and selectively bind to other molecules, Zaucher explained in an interview.

Besides nanobrushes, other examples of "smart" large molecules include those that interact through molecular recognition, such as streptavidin and biotin, and the biologically inspired elastin-like polypeptides (ELPs). Duke engineering researchers have developed ways to pattern all these constituents so they can react at nanoscale dimensions, he said. "One reason is simply the challenge: can we make features this small? Also, making features that small means you could get away with using very small amounts of chemicals, for example of proteins you might want to detect."

Zaucher, associate professor of biomedical engineering Ashutosh Chilkoti and other Pratt School investigators can now lay down patterns of the molecule streptavidin with dimensions of a few hundred nanometers. They do this with a special "dip pen" technique developed at Northwestern University that lets them turn an atomic force microscope (AFM) into a nanoscale quill. An AFM is a microscope that can image surfaces and detect forces at resolutions approaching the atomic scale.

Steptavidin, a natural protein that comes from the Streptomyces bacterium, can bind especially tightly with biotin, which is a member of the vitamin H family that occurs widely in nature. The nanopatterned streptavidin can thus link with other proteins that have been treated with biotin. This arrangement is thus potentially useful for grabbing proteins of interest out of large multi-molecular mixtures for analysis, Zauscher said.

By substituting similarly binding iminobiotin for biotin, the investigators can also remove the chemicals from a surface and start again, he said – in essence like erasing a blackboard. That’s because iminobiotin, unlike biotin, releases its binding grip when the solution becomes highly acidic.

The Duke investigators used the same AFM method to deposit patterns as small as 200 nanometers of elastin-like polypeptides (ELPs). These protein-like molecules, which are similar to elastins in animal connective tissue, were genetically engineered in Chilkoti’s laboratory.

The immobilized ELPs can then reversibly bind with other ELP-tagged proteins in solution, allowing them to potentially select out individual molecules for identification. Such a tiny ELP array might be used, for example, to screen the protein contents of an individual cell, Zauscher said.

A paper in the February 2004 issue of the research journal Nano Letters describes how Zauscher’s group has fabricated patterned nanobrushes using what is called the atom transfer radical polymerization method. This method allows certain polymers to grow from a surface in controlled reactions that makes them sprout in brush-like shapes between 30-500 nanometers long.

An AFM was initially used to lay out nanopatterns from which the bristles grow in what he called a "pseudo-living" manner, but not by the dip pen technique. Instead, the AFM’s tip was used like a back hoe, Zauscher said, to "nanoshave" channels for the initiating chemical. The Duke researchers found beams of electrons can also be used to create the nanopatterns in lieu of an AFM.

The "smart" polymer used is stimulus-responsive, in that its long chained brushes can change their conformation by adding solvents or changing the temperature.

Such nanobrushes could potentially be used as repeat-use chemical detectors in tiny "microfluidic" devices such as a lab on a microchip, he said.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>