Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke engineers fabricating polymer ’nanobrushes’ and other ’smart’ molecule-sized structures

31.03.2004


Engineers from Duke University have described progress building so-called "smart nanostructures," including billionths-of-a-meter-scale "nanobrushes" that can selectively and reversibly sprout from surfaces in response to changes in temperature or solvent chemistry.



In talks delivered during the March 28-April 1 at the American Chemical Society annual meeting in Anaheim, researchers from Duke’s Pratt School of Engineering also told how they are using an atomic force microscope to create reprogrammable "nanopatterns" of large biologically-based molecules that could potentially serve to analyze the protein contents of individual cells, among other uses.

The molecules are reprogrammable in the sense that they could be activated, deactivated, and then activated again for another use. They could serve as analytical tools because they could capture and isolate proteins of interest from complex mixtures.


The molecular dimensions of this work -- at the billionths-of-a-meter scale ("nano" means billionths) -- "introduces the concept of scaling-down chemistries to very small lengths," said Stefan Zauscher, a Duke assistant professor of mechanical engineering and materials science.

Zauscher was an organizer of a society symposium called "Smart Polymers on Colloids and Surfaces. "Smart" polymers are long-chained molecules that can reversibly change their conformations as well as reversibly and selectively bind to other molecules, Zaucher explained in an interview.

Besides nanobrushes, other examples of "smart" large molecules include those that interact through molecular recognition, such as streptavidin and biotin, and the biologically inspired elastin-like polypeptides (ELPs). Duke engineering researchers have developed ways to pattern all these constituents so they can react at nanoscale dimensions, he said. "One reason is simply the challenge: can we make features this small? Also, making features that small means you could get away with using very small amounts of chemicals, for example of proteins you might want to detect."

Zaucher, associate professor of biomedical engineering Ashutosh Chilkoti and other Pratt School investigators can now lay down patterns of the molecule streptavidin with dimensions of a few hundred nanometers. They do this with a special "dip pen" technique developed at Northwestern University that lets them turn an atomic force microscope (AFM) into a nanoscale quill. An AFM is a microscope that can image surfaces and detect forces at resolutions approaching the atomic scale.

Steptavidin, a natural protein that comes from the Streptomyces bacterium, can bind especially tightly with biotin, which is a member of the vitamin H family that occurs widely in nature. The nanopatterned streptavidin can thus link with other proteins that have been treated with biotin. This arrangement is thus potentially useful for grabbing proteins of interest out of large multi-molecular mixtures for analysis, Zauscher said.

By substituting similarly binding iminobiotin for biotin, the investigators can also remove the chemicals from a surface and start again, he said – in essence like erasing a blackboard. That’s because iminobiotin, unlike biotin, releases its binding grip when the solution becomes highly acidic.

The Duke investigators used the same AFM method to deposit patterns as small as 200 nanometers of elastin-like polypeptides (ELPs). These protein-like molecules, which are similar to elastins in animal connective tissue, were genetically engineered in Chilkoti’s laboratory.

The immobilized ELPs can then reversibly bind with other ELP-tagged proteins in solution, allowing them to potentially select out individual molecules for identification. Such a tiny ELP array might be used, for example, to screen the protein contents of an individual cell, Zauscher said.

A paper in the February 2004 issue of the research journal Nano Letters describes how Zauscher’s group has fabricated patterned nanobrushes using what is called the atom transfer radical polymerization method. This method allows certain polymers to grow from a surface in controlled reactions that makes them sprout in brush-like shapes between 30-500 nanometers long.

An AFM was initially used to lay out nanopatterns from which the bristles grow in what he called a "pseudo-living" manner, but not by the dip pen technique. Instead, the AFM’s tip was used like a back hoe, Zauscher said, to "nanoshave" channels for the initiating chemical. The Duke researchers found beams of electrons can also be used to create the nanopatterns in lieu of an AFM.

The "smart" polymer used is stimulus-responsive, in that its long chained brushes can change their conformation by adding solvents or changing the temperature.

Such nanobrushes could potentially be used as repeat-use chemical detectors in tiny "microfluidic" devices such as a lab on a microchip, he said.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>