Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny machines need even tinier lubricants

30.03.2004


Tiny machines built as part of silicon chips are all around us, and their need for lubrication is the same as large machines such as automobile engines, but conventional lubricants, like oils, are too heavy for these micro electromechanical systems (MEMS), so Penn State researchers are looking to gases to provide thin films of slippery coating.

MEMS today are mostly found in automobile air bags as the sensor that marks sudden deceleration and triggers airbag use. They can also take the form of tiny motors that move mirrors to focus a beam of light, or tiny nozzles that provide minute droplets of ink in ink jet printers.

"Traditionally, the lubrication industry uses viscose liquids to lubricate – oils or oils and additives – to reduce friction and increase efficiency," says Dr. Seong H. Kim, assistant professor of chemical engineering. "However, oil-based lubricant use in MEMS causes a power dissipation that is unacceptable."



Because MEMS are so small, with parts about the width of a human hair, and exert so little force, from almost none to the equivalent of the Earth’s gravity on a thousand red blood cells, conventional lubricants simply do not work. Oil molecules are usually large and relatively heavy. They not only stop the MEMS dead in their tracks, but also cannot infiltrate the microscopic cracks and crevices of the machines.

The current trend in MEMS is to use solid lubricants -- thin-film coatings of diamond-like carbon or self-assembling monolayers of methylated or fluorocarbon compounds. While solids provide a thin enough layer, they do not always coat the entire mechanism. They are also subject to wear because of their thinness and are not self-healing or replenishing.

"The fact that the solid coatings work tells us that for lubrication, all we need is a thin film," Kim told attendees today (Mar. 29) at the 227th National Meeting of the American Chemical Society.

Kim and Dr. Kenneth Strawhecker, postdoctoral fellow in chemical engineering, investigated delivering a thin coating of liquid lubricant by condensing a gas onto the surface of the MEMS. The researchers investigated alcohols including ethanol, propanol, butanol and pentanol.

The researchers chose alcohols because they are both hydrophilic and hydrophobic, easily combining with water on one end and combining with other compounds on the other. At the incredibly low forces encountered in MEMS, alcohols, which are not generally considered good lubricants, work.

Solubility in water is an important characteristic in lubricating MEMS. Water is always present in the air as humidity and the water does condense on surfaces. For some devices, like the air bag sensor, water is why these MEMS are used only once. These sensors have two tiny strips of material that come into contact upon rapid deceleration. Any water on the strip surfaces causes the strips to stick in the closed mode. Surface tension of the water holds the material together in the same way two panes of glass with water between become stuck. However, alcohol as a lubricant would prevent water from causing the strips to attach.

"It might also be possible to use a gas delivered liquid thin film that would regenerate the sensors allowing recycling of the air bag mechanisms," says Kim.

The researchers tested the gas lubricants at various vapor pressures and find that they produce a thin film across a wide range. The small size of the alcohol molecules allows them to coat fine details of the tiny machines and the presence of gas around the MEMS makes the system self-repairing. As the thin layer wears away, more lubricant condenses to heal the area. The thin films do not interfere with either mechanical or electrical operation.


"The next research issue we have is how to encapsulate the MEMS so we can entrap the gas," says Kim. "A variety of delivery methods exist including possibly using a polymer that emits the alcohol as temperatures increase."

The researchers also want to look at other alcohols and other compounds as potential MEMS lubricants.


The National Science Foundation and the Pennsylvania State University supported this work.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>