Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny machines need even tinier lubricants

30.03.2004


Tiny machines built as part of silicon chips are all around us, and their need for lubrication is the same as large machines such as automobile engines, but conventional lubricants, like oils, are too heavy for these micro electromechanical systems (MEMS), so Penn State researchers are looking to gases to provide thin films of slippery coating.

MEMS today are mostly found in automobile air bags as the sensor that marks sudden deceleration and triggers airbag use. They can also take the form of tiny motors that move mirrors to focus a beam of light, or tiny nozzles that provide minute droplets of ink in ink jet printers.

"Traditionally, the lubrication industry uses viscose liquids to lubricate – oils or oils and additives – to reduce friction and increase efficiency," says Dr. Seong H. Kim, assistant professor of chemical engineering. "However, oil-based lubricant use in MEMS causes a power dissipation that is unacceptable."



Because MEMS are so small, with parts about the width of a human hair, and exert so little force, from almost none to the equivalent of the Earth’s gravity on a thousand red blood cells, conventional lubricants simply do not work. Oil molecules are usually large and relatively heavy. They not only stop the MEMS dead in their tracks, but also cannot infiltrate the microscopic cracks and crevices of the machines.

The current trend in MEMS is to use solid lubricants -- thin-film coatings of diamond-like carbon or self-assembling monolayers of methylated or fluorocarbon compounds. While solids provide a thin enough layer, they do not always coat the entire mechanism. They are also subject to wear because of their thinness and are not self-healing or replenishing.

"The fact that the solid coatings work tells us that for lubrication, all we need is a thin film," Kim told attendees today (Mar. 29) at the 227th National Meeting of the American Chemical Society.

Kim and Dr. Kenneth Strawhecker, postdoctoral fellow in chemical engineering, investigated delivering a thin coating of liquid lubricant by condensing a gas onto the surface of the MEMS. The researchers investigated alcohols including ethanol, propanol, butanol and pentanol.

The researchers chose alcohols because they are both hydrophilic and hydrophobic, easily combining with water on one end and combining with other compounds on the other. At the incredibly low forces encountered in MEMS, alcohols, which are not generally considered good lubricants, work.

Solubility in water is an important characteristic in lubricating MEMS. Water is always present in the air as humidity and the water does condense on surfaces. For some devices, like the air bag sensor, water is why these MEMS are used only once. These sensors have two tiny strips of material that come into contact upon rapid deceleration. Any water on the strip surfaces causes the strips to stick in the closed mode. Surface tension of the water holds the material together in the same way two panes of glass with water between become stuck. However, alcohol as a lubricant would prevent water from causing the strips to attach.

"It might also be possible to use a gas delivered liquid thin film that would regenerate the sensors allowing recycling of the air bag mechanisms," says Kim.

The researchers tested the gas lubricants at various vapor pressures and find that they produce a thin film across a wide range. The small size of the alcohol molecules allows them to coat fine details of the tiny machines and the presence of gas around the MEMS makes the system self-repairing. As the thin layer wears away, more lubricant condenses to heal the area. The thin films do not interfere with either mechanical or electrical operation.


"The next research issue we have is how to encapsulate the MEMS so we can entrap the gas," says Kim. "A variety of delivery methods exist including possibly using a polymer that emits the alcohol as temperatures increase."

The researchers also want to look at other alcohols and other compounds as potential MEMS lubricants.


The National Science Foundation and the Pennsylvania State University supported this work.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>