Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record-breaking tuning lasers lead to better data flow

11.03.2004


A novel process for fabricating tuneable lasers using micro-machined mirrors was developed by IST project TUNVIC. Part of a special two-part device, it allows variable wavelengths of emitted light that will ultimately allow increased volumes of data to be sent through a single optical fibre cable.



High-capacity data links between networked routers are part of the Internet’s backbone. These links use optical fibre cables through which information is sent using semiconductor lasers. By deploying several lasers of different wavelengths, it is possible to multiply the volume of data that can be sent through a single optical fibre. And with increased Internet traffic, ever increasing amounts of data will need to be exchanged.

"There is a clear need for this [TUNVIC] fabrication process," says Prof. Peter Meissner of the Technical University of Darmstadt and project coordinator. "For example, in WDM [wavelength division multiplexed] communication links, separate semiconductor lasers are used to generate light for each wavelength. Reliability is a key consideration in operational data links, and the system design incorporates pairs of lasers for each wavelength: one in use, the other as a ’hot’ standby. In the event of a failure, the standby laser can take over and maintain the link until the fault is fixed."


The problem is that the lasers, together their associated control systems, are expensive. A solution would be to use a single tuneable laser to act as the hot standby for all the lasers. In the event of a failure, the tuneable laser could be set to the wavelength of the failed component and the service could be resumed.

Two-chip process

At the heart of the TUNVIC process is the idea of using a two-part device. The first is a vertical-cavity surface-emitting laser (VCSEL), where light emitted from the surface, as opposed to the edge, is used for the laser action. This has the advantage of high coupling efficiency to the optical fibre. The second part is a lasing cavity defined by a micro-mechanical structure on which a mirror surface has been created.

There are clear advantages to separating these functionalities. The performance of the VCSEL amplifier and the micro-mechanical structure can be individually optimised, without having to make compromises. Furthermore, the design leads to a relatively long resonator length, which in turn leads to a smaller laser line width, (i.e. purer spectral light output). This has to be balanced against additional assembly steps, which inevitably increase process costs.

Technically speaking, the VCSEL uses an Indium Phosphide substrate. The mirrors are diffused Bragg reflectors, which are fabricated from 40 pairs of layers. The micro-mechanical structure is machined from a membrane. It consists of a central circular area that is suspended by four supports; the length of these supports, and hence the length of the laser cavity, can be modified by passing a small heating current through the substrate. A dissipation of 2mW is sufficient to displace the mirror by around 2 microns. The whole system can provide 0.5 mW light output over a tuning range of 30 nm.

"We set out to produce a laser that could be pumped both electrically and optically," adds Meissner. Pumping is the input of energy that is necessary for the lasing action to take place. "We succeeded in these objectives and managed to get some very nice results. We currently hold the world record for tuning long-wavelength lasers."

"The first application for the devices made with the process is to check the stability and reproducability," says Meissner. "We would need to cycle it through a sequence of wavelengths and monitor the performance. The devices don’t suffer from mode hopping, as one might expect with external cavity lasers."

In the longer term, devices such as these could be used in a number of areas. Wavelength routing is one possibility. Another application might be gas sensing. There are a number of gases that have spectral absorption lines in the region of 1.5 microns. A tuneable laser could scan through a range of wavelengths and specific gases could be identified by measuring the wavelength at which absorption occurs.

Contact:
Peter Meissner
Technische Universitaet Darmstadt
Institut fuer Hochfrequenztechnik
Karolinenplatz 5
D-64289 Darmstadt
Germany
Tel: +49-6151-162462
Fax: +49-6151-164367
Email: meissner@hrz1.hrz.tu-darmstadt.de

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=62960

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>