Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record-breaking tuning lasers lead to better data flow

11.03.2004


A novel process for fabricating tuneable lasers using micro-machined mirrors was developed by IST project TUNVIC. Part of a special two-part device, it allows variable wavelengths of emitted light that will ultimately allow increased volumes of data to be sent through a single optical fibre cable.



High-capacity data links between networked routers are part of the Internet’s backbone. These links use optical fibre cables through which information is sent using semiconductor lasers. By deploying several lasers of different wavelengths, it is possible to multiply the volume of data that can be sent through a single optical fibre. And with increased Internet traffic, ever increasing amounts of data will need to be exchanged.

"There is a clear need for this [TUNVIC] fabrication process," says Prof. Peter Meissner of the Technical University of Darmstadt and project coordinator. "For example, in WDM [wavelength division multiplexed] communication links, separate semiconductor lasers are used to generate light for each wavelength. Reliability is a key consideration in operational data links, and the system design incorporates pairs of lasers for each wavelength: one in use, the other as a ’hot’ standby. In the event of a failure, the standby laser can take over and maintain the link until the fault is fixed."


The problem is that the lasers, together their associated control systems, are expensive. A solution would be to use a single tuneable laser to act as the hot standby for all the lasers. In the event of a failure, the tuneable laser could be set to the wavelength of the failed component and the service could be resumed.

Two-chip process

At the heart of the TUNVIC process is the idea of using a two-part device. The first is a vertical-cavity surface-emitting laser (VCSEL), where light emitted from the surface, as opposed to the edge, is used for the laser action. This has the advantage of high coupling efficiency to the optical fibre. The second part is a lasing cavity defined by a micro-mechanical structure on which a mirror surface has been created.

There are clear advantages to separating these functionalities. The performance of the VCSEL amplifier and the micro-mechanical structure can be individually optimised, without having to make compromises. Furthermore, the design leads to a relatively long resonator length, which in turn leads to a smaller laser line width, (i.e. purer spectral light output). This has to be balanced against additional assembly steps, which inevitably increase process costs.

Technically speaking, the VCSEL uses an Indium Phosphide substrate. The mirrors are diffused Bragg reflectors, which are fabricated from 40 pairs of layers. The micro-mechanical structure is machined from a membrane. It consists of a central circular area that is suspended by four supports; the length of these supports, and hence the length of the laser cavity, can be modified by passing a small heating current through the substrate. A dissipation of 2mW is sufficient to displace the mirror by around 2 microns. The whole system can provide 0.5 mW light output over a tuning range of 30 nm.

"We set out to produce a laser that could be pumped both electrically and optically," adds Meissner. Pumping is the input of energy that is necessary for the lasing action to take place. "We succeeded in these objectives and managed to get some very nice results. We currently hold the world record for tuning long-wavelength lasers."

"The first application for the devices made with the process is to check the stability and reproducability," says Meissner. "We would need to cycle it through a sequence of wavelengths and monitor the performance. The devices don’t suffer from mode hopping, as one might expect with external cavity lasers."

In the longer term, devices such as these could be used in a number of areas. Wavelength routing is one possibility. Another application might be gas sensing. There are a number of gases that have spectral absorption lines in the region of 1.5 microns. A tuneable laser could scan through a range of wavelengths and specific gases could be identified by measuring the wavelength at which absorption occurs.

Contact:
Peter Meissner
Technische Universitaet Darmstadt
Institut fuer Hochfrequenztechnik
Karolinenplatz 5
D-64289 Darmstadt
Germany
Tel: +49-6151-162462
Fax: +49-6151-164367
Email: meissner@hrz1.hrz.tu-darmstadt.de

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=62960

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>