Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cell shocked


SC researchers present new electric pulse technology

A new technology that uses electric fields to alter the "guts" of a cell may lead to improved methods of treating diseases such as cancer and leukemia, according to researchers in the USC Viterbi School of Engineering.

The technology, called electroperturbation, exposes cells to electric pulses just tens of nanoseconds (tens of billionths of a second) long, said electrical engineer Thomas Vernier, an investigator on a collaborative study to develop the technology.

Results of the work - supported primarily by the Air Force Office of Scientific Research with additional funding from the Army Research Office - were reported today at the national Nanotechnology 2004 conference in Boston, Mass.

The pulses are so brief and intense that they pass virtually undetected through the outer membrane of the cell without damaging it, Vernier said. But these fast-rising pulses pack such a powerful punch to the intracellular structures of the cell that they can dramatically change its biochemical balance, or trigger the start of cell death, a process known as apoptosis.

"In essence, we’re delivering thousands of volts to the cell in mere nanosecond intervals," said Vernier, an expert in semiconductors who is an engineering manager at the USC Viterbi School’s Information Sciences Institute.

"These high-frequency pulses are so short that they pass right through the cytoplasmic membrane without altering its structure," he said. "But they jolt the cell’s insides and, when delivered in strong enough doses, prompt the cell to self-destruct."

Still a fairly new application, nanosecond electric pulsing uses "Ultra-short Pulsed Systems Electroperturbation Technology," or UPSET. The technology, which has been in development at the school’s department of electrical engineering since 2001, is supported by grants secured by the project’s principal investigator, Martin Gundersen, a professor of electrical engineering.

Vernier and a research team from the department of electrical engineering, the department of cell and neurobiology at the Keck School of Medicine of USC and the Biophotonics Laboratory at Cedars-Sinai Medical Center have been testing the UPSET technology by exposing leukemia cells to high-frequency electric fields.

The technique has advantages over conventional T-cell treatments, Vernier said. For starters, it is noninvasive and can be delivered remotely, without attaching contacts or probes directly to the cells. The hope is that nanoelectric pulsing one day may replace procedures such as surgical removal of tumors or toxic treatments such as chemotherapy.

Nanosecond pulsing is an improvement over an older technique, called electroporation, Vernier said. Electroporation delivers longer duration electric pulses on the order of microseconds to milliseconds. The pulses punch holes in the cell’s external membrane, but they also can inadvertently fry the cell.

Ultra-short electric pulses deliver shorter and higher-frequency bursts of electricity, which do not puncture the cell’s outer membrane or raise its temperature enough to damage the cell. Instead, Vernier said, the swift spike in voltage simply rearranges the cell’s insides, such as its nucleus and mitochondria, without altering its outer shell.

Working in Gundersen’s laboratory on the third floor of USC’s Seaver Science Center, Vernier uses UPSET to study the biological mechanisms that trigger cell death.

Healthy cells automatically self-destruct when they become unhealthy or when their numbers grow too large. Mutated cells, such as cancer cells, lose the capacity to self-destruct and, instead, begin to proliferate rapidly. So Vernier and his colleagues zap cells with different pulse exposures to see how the cells react.

After exposure, the cells are treated with membrane-staining dyes and imaged to identify internal changes. Vernier’s team also is studying the effects of the technology on different types of cells.

"The more powerful nanosecond pulsing requires a very sophisticated solid-state micropulse generator, a coaxial cable and special spark-gap switch, all of which we are designing and assembling at USC," Vernier said.

Initial observations of the UPSET system have shown that the nanosecond pulses produce bursts of calcium inside cells within milliseconds after the pulse is delivered, Vernier said.

"This is important because calcium ions serve as regulatory messengers in a wide variety of processes across the physiological landscape of the cell," he said. "We are very interested in understanding how we might be able to use calcium ion releases to alter specific intracellular structures."

As the technology is refined, Vernier believes UPSET may become a more practical and convenient tool for treating a variety of diseases. The technology also is likely to lead to other biologically inspired nanomachines that one day may be capable of coaxing unhealthy cells into healing or killing themselves.

Usha Sutliff | EurekAlert!
Further information:

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>