Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare ’tumbleweed’ survives Antarctic conditions

04.03.2004


A balloon-shaped robot explorer that one day could search for water on other planets has survived some of the most trying conditions on planet Earth during a 70-kilometer (40-mile), wind-driven trek across Antarctica.



The Tumbleweed Rover, which is being developed at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., left the National Science Foundation’s Amundsen-Scott South Pole Station on Jan. 24, completing its roll across Antarctica’s polar plateau roughly eight days later.

Along the way, the beach-ball-shaped device, roughly two meters (six feet) in diameter, used the global Iridium satellite network to send information about its position, the surrounding air temperature, pressure, humidity and light intensity to a JPL ground station.


The test was designed to confirm the rover’s long-term durability in an extremely cold environment, with an eye toward eventually using the devices to explore the Martian polar caps and other planets in the solar system. It reinforces the findings of a test conducted previously on the Greenland ice cap, also carried out under the auspices of NSF’s Office of Polar Programs (OPP).

OPP manages the U.S. Antarctic Program, arranging logistical support and infrastructure for NSF-supported scientists as well as other government agencies, such as NASA, when they conduct science in Antarctica.

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions.

The final Tumbleweed Rover is envisioned as a lightweight, roughly 40-kilogram (88 pound) device that can serve multiple roles as an independent robotic explorer. The rover’s design allows it to act as a parachute while descending through an atmosphere, an air bag on landing, and, ultimately, as an unmanned vehicle equipped with an package of scientific instruments.

Tumbleweed is the brainchild of several JPL scientists, including Alberto Behar, a researcher with JPL’s robotic vehicles group.

During a three-day deployment at the South Pole, Behar unpacked, assembled, inflated, tested, and deployed the rover. He says that the efficiency of the deployment is testament to Tumbleweed’ s cost-effectiveness and ease of use.

Even though the average external temperature during the rover’s deployment approached minus 30 degrees Celsius (minus 22 degrees Fahrenheit), the rover kept its internal instrument payload at an average temperature of roughly 30 degrees Celsius (86 degrees Fahrenheit) using excess heat from the instrument electronics circulated by an air pump.

The ultra-durable ball reached speeds of 30 kilometers per hour (10 miles per hour) over the Antarctic ice cap, and traveled at an average speed of about six kilometers per hour (3.7 mph). v The winds at the South Pole were unusually low during the test. As a result, the rover did not move at all for several periods during its deployment.

But, even taking those lulls into account, Tumbleweed managed an average speed of 1.3 kilometers per hour (0.8 mph) over the course of the deployment. Such speeds are unattainable in conventional, mechanical rovers--such as Spirit and Opportunity, currently operating on the surface of Mars--which average little more than 0.05 kilometers per hour (0.03 mph) on flat, dry ground.

Behar said the rover’s design is especially well suited for polar missions that use instrument packages to look for water beneath the surface of an ice sheet, a task that cannot be done accurately from orbit.

Plans to construct the next generation Tumbleweed rover are already underway at JPL.

Design refinements are likely to focus on reducing the rover’s weight and rolling resistance to lower the minimum winds needed to propel the rover and enable it to travel farther and adapting the payload to include a ground-penetrating radar or magnetometer to conduct ice surveys.

Behar said he hopes an updated version of Tumbleweed will be deployed again in late 2004 or early 2005, and that the Tumbleweed design may one day find itself rolling over the polar icecaps of Mars.

Peter West | NSF
Further information:
http://www.nsf.gov/
http://www.jpl.nasa.gov/technology/features/tumbleweed.html
http://www.nsf.gov/od/lpa/news/media/01/fslogistics.htm

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>