Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping microfluidics’ impact on life sciences

03.03.2004


Over the last decade, microfluidics has enabled the rapid growth and commercialisation of the life sciences, and IST-project FLOWMAP aims to further these advances by elaborating a roadmap that identifies technological gaps and streamlines RTD activities in the field.



One of the most dynamically emerging disciplines of microtechnology, microfluidic devices can accurately control minute volumes of fluid - mostly liquids - well below the microlitre range.

Modern inkjet technology with global turnover topping 10 billion euros represents an impressive example of how microfluidics has leveraged a mature and commercially successful area of business. By significantly reducing reagent volumes and thus the costs per test, microfluidics-based liquid handling equipment has emerged from inkjet technology to enable modern high-throughput technologies for pharmaceutical drug discovery.


The FLOWMAP consortium identified a broad gap between the technological capabilities on the one side and the know-how available on the developers’ back-end side, and the awareness, needs and expectations among potential customers acting on the front end. Bringing together more than 150 key players from different disciplines on a European level, FLOWMAP plotted a technology roadmap for the advances expected in microfluidics and defined future requirements of the customers through interviews, questionnaires and workshops.

"We have quantified the economic development and pinpointed important market drivers. Furthermore, the paramount technology drivers which will determine the present and expected capabilities have been identified. This way, the roadmap provides a solid basis for decision makers planning investments in the life science arena," says project manager Jens Ducree.

He adds the roadmap has now been produced from the results of these surveys and "we are shipping an electronic 197-page record to customers." He points out that an executive summary of the roadmap is currently available on their website.

The summary notes the technological advantages arising from microfluidic qualities, such as fast response times, well-controlled reaction conditions, small power consumption, low dead volumes and the possibility to manipulate liquids by means of electric fields, heating or ultrasonic waves. These qualities allow for compact, often stand-alone systems that have been designed featuring full process integration and automation to carry out complex tasks in a hands-on fashion.

These portable or point-of-use systems leverage applications such as so-called ’labs-on-a-chip’ for medical diagnostics or other analytical purposes like ecological monitoring. The summary points out other promising markets comprise miniaturised therapeutical devices, e.g. for implantable, stand-alone drug delivery units. As a benefit to research and development, microfluidics also provides a unique access to the nanoworld of biomolecular chemistry, thus setting the pace for many leading edge biotechnological innovations.

Major hurdles presently impeding the commercial proliferation of microfluidic technologies identified by the roadmap include the cost of associated equipment and microfluidic components, the strength of competing/substitutive technologies, and the lack of commercial suppliers, infrastructure and industrial standards.

Based on survey consensus, the roadmap forecasts an overall annual growth rate for microfluidic technologies in the life sciences of more than 30 per cent per annum with drug discovery, medical diagnostics and therapeutic devices representing the most promising fields. Using the market analysis, consortium partner Yole Développement estimates the current global market of microfluidics in the life sciences at approximately 500 million euros, increasing at an annual growth rate of 19 per cent to 1.4 billion euros in 2008. Ducree adds that the roadmap provides a detailed breakdown of this turnover in each microfluidics segment identified in life sciences, which can be ordered from the website.

Contact:
Jens Ducree
Albert-Ludwigs-Universitaet Freiburg
IMTEK
Chair for Mems Applications
Fahnenbergplatz
D-79085 Freiburg
Germany
Tel: +49-761-2037324
Fax: +49-761-2037322
Email: ducree@imtek.de

Source: Based on information from FLOWMAP

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=62763
http://www.microfluidics-roadmap.com/

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>