Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping microfluidics’ impact on life sciences

03.03.2004


Over the last decade, microfluidics has enabled the rapid growth and commercialisation of the life sciences, and IST-project FLOWMAP aims to further these advances by elaborating a roadmap that identifies technological gaps and streamlines RTD activities in the field.



One of the most dynamically emerging disciplines of microtechnology, microfluidic devices can accurately control minute volumes of fluid - mostly liquids - well below the microlitre range.

Modern inkjet technology with global turnover topping 10 billion euros represents an impressive example of how microfluidics has leveraged a mature and commercially successful area of business. By significantly reducing reagent volumes and thus the costs per test, microfluidics-based liquid handling equipment has emerged from inkjet technology to enable modern high-throughput technologies for pharmaceutical drug discovery.


The FLOWMAP consortium identified a broad gap between the technological capabilities on the one side and the know-how available on the developers’ back-end side, and the awareness, needs and expectations among potential customers acting on the front end. Bringing together more than 150 key players from different disciplines on a European level, FLOWMAP plotted a technology roadmap for the advances expected in microfluidics and defined future requirements of the customers through interviews, questionnaires and workshops.

"We have quantified the economic development and pinpointed important market drivers. Furthermore, the paramount technology drivers which will determine the present and expected capabilities have been identified. This way, the roadmap provides a solid basis for decision makers planning investments in the life science arena," says project manager Jens Ducree.

He adds the roadmap has now been produced from the results of these surveys and "we are shipping an electronic 197-page record to customers." He points out that an executive summary of the roadmap is currently available on their website.

The summary notes the technological advantages arising from microfluidic qualities, such as fast response times, well-controlled reaction conditions, small power consumption, low dead volumes and the possibility to manipulate liquids by means of electric fields, heating or ultrasonic waves. These qualities allow for compact, often stand-alone systems that have been designed featuring full process integration and automation to carry out complex tasks in a hands-on fashion.

These portable or point-of-use systems leverage applications such as so-called ’labs-on-a-chip’ for medical diagnostics or other analytical purposes like ecological monitoring. The summary points out other promising markets comprise miniaturised therapeutical devices, e.g. for implantable, stand-alone drug delivery units. As a benefit to research and development, microfluidics also provides a unique access to the nanoworld of biomolecular chemistry, thus setting the pace for many leading edge biotechnological innovations.

Major hurdles presently impeding the commercial proliferation of microfluidic technologies identified by the roadmap include the cost of associated equipment and microfluidic components, the strength of competing/substitutive technologies, and the lack of commercial suppliers, infrastructure and industrial standards.

Based on survey consensus, the roadmap forecasts an overall annual growth rate for microfluidic technologies in the life sciences of more than 30 per cent per annum with drug discovery, medical diagnostics and therapeutic devices representing the most promising fields. Using the market analysis, consortium partner Yole Développement estimates the current global market of microfluidics in the life sciences at approximately 500 million euros, increasing at an annual growth rate of 19 per cent to 1.4 billion euros in 2008. Ducree adds that the roadmap provides a detailed breakdown of this turnover in each microfluidics segment identified in life sciences, which can be ordered from the website.

Contact:
Jens Ducree
Albert-Ludwigs-Universitaet Freiburg
IMTEK
Chair for Mems Applications
Fahnenbergplatz
D-79085 Freiburg
Germany
Tel: +49-761-2037324
Fax: +49-761-2037322
Email: ducree@imtek.de

Source: Based on information from FLOWMAP

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=62763
http://www.microfluidics-roadmap.com/

More articles from Process Engineering:

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>