Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwaves could bring concealed weapons to light

02.03.2004


Microwaves could provide a safe new way of finding hidden weapons and buried mines, thanks to UK research.



Scientists are developing a microwave-based technique that can generate high-quality images of hidden objects. The research may lead to the use of microwaves as a safer alternative to X-rays in airport security checks, building searches, landmine detection and other applications.

This leading-edge work is being carried out by a team of engineers and physicists at Northumbria University, with funding from the Engineering and Physical Sciences Research Council (EPSRC).


Detection systems used in the fight against terrorism and other crimes rely on X-ray radiation to penetrate materials and build up an image of what is underneath. However, because X-rays can damage living tissue, considerable precautions need to be taken when using these systems. Microwave radiation, on the other hand, is harmless to humans and has the potential to produce 3-dimensional holographic images of objects concealed from view.

Although technically viable, microwave imaging systems will only see widespread deployment if they can produce results quickly and cheaply. To tackle this key barrier, the innovative technique being developed by the new EPSRC-funded project will comprise a two-stage process. The first involves the use of conventional detectors to measure the 2-dimensional pattern made by the scattering of microwaves when they come into contact with a hidden object. The second stage takes this data and uses computer software to construct a 3-dimensional image from it. The technique aims to avoid the need to use complex “one-stage” equipment that produces images slowly and at considerable expense.

Dr David Smith, from the University’s School of Engineering and Technology, is leading the project. He says: “The technology could be very versatile and suited to use in security, medical and industrial applications. Although we are just at the beginning of this research, our ultimate aim is to offer an alternative, fast 3D microwave imaging technique which can be used across a wide range of disciplines”.

Jane Reck | EPSRC
Further information:
http://www.epsrc.ac.uk/website/default.aspx?CID=10524&ZoneID=8&MenuID=121

More articles from Process Engineering:

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>