Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exposing Buried Danger: Field Tests Advance Seismic Landmine Detection System

02.03.2004


A landmine detection system under development by a team of Georgia Tech researchers uses high-frequency seismic waves to displace soil and objects in it slightly. A non-contact radar sensor then measures the results, creating a visual representation of the displacement that reveals the buried mines.
Georgia Tech Photo: Gary Meek


Waymond R. Scott, Jr., a professor in Georgia Tech’s School of Electrical and Computer Engineering, is the principal investigator for the landmine detection project.
Georgia Tech Photo: Gary Meek


Millions of land mines are buried worldwide, and these weapons were responsible for an estimated 16,000 injuries and deaths in 2002.

Georgia Institute of Technology researchers are making progress with a landmine detection system that could ultimately help prevent such losses. The system uses high-frequency seismic waves to displace soil and objects in it slightly (less than one ten-thousandth of an inch). A non-contacting radar sensor then measures the results, creating a visual representation of the displacement that reveals the buried mines.

This seismic-wave system presents potential advantages over existing electromagnetic-wave techniques used in metal detectors and ground-penetrating radars (GPR). Although metal detectors and GPRs can locate mines successfully, they have more trouble locating the small, plastic anti-personnel mines that have become more prevalent. Metal detectors and GPRs can also be confused by ground clutter -- rocks, sticks or scraps of metal - sometimes resulting in many false alarms.



Yet because plastic mines have very different mechanical properties from soil and ground clutter, the seismic waves are capable of detecting and distinguishing these mines from common ground clutter. This has been demonstrated in laboratory and limited field tests.

"When a wave hits a land mine, resonance builds over the top of the mine, triggering a vibration which is bigger than the wave that excited it - and the vibration persists longer," says Waymond R. Scott Jr., a professor in Georgia Tech’s School of Electrical and Computer Engineering (ECE) and principal investigator on the project.

Sponsored by the U.S. Office of Naval Research, the U.S. Army Research Office and the U.S. Army Night Vision & Electronic Sensors Systems Directorate, the mine-detection project involves researchers from various departments at Georgia Tech. This multidisciplinary team started work in 1997 with computer modeling and lab experiments. Field testing began in fall 2001, and during the past two years, the researchers have conducted tests at six sites.

In November 2002, the researchers traveled to a government testing facility in a temperate climate where they detected six different anti-tank and anti-personnel mines. "Our results there were comparable to what we saw in the lab, which was very significant. That was a big hurdle for us," Scott says.

Field tests at government facilities give the researchers greater credibility because conditions are more realistic, and they can compare results to data from other research teams. What’s more, the mines at government test sites have been buried for several years, which complicates detection.

"It’s much easier to detect a mine that’s been buried recently because you’ve disturbed the soil," says George McCall, a senior research engineer in the Georgia Tech Research Institute’s Electro-Optics, Environment and Materials Laboratory. "After a land mine has been in the ground for a while, the soil becomes weathered and more compact. This makes it harder to find, so it’s a better test for our detection system."

In February 2003, the researchers traveled to another government testing facility where the ground was frozen. This test broadened the scope of environmental conditions under which the mine detection system had been used.

Testing in a variety of sites is important because different environmental conditions affect how far and how fast seismic waves travel through the earth. That, in turn, affects how waves interact with buried mines and what kind of signal processing is required to image the mines.

The field tests have also given the researchers a chance to develop another aspect of the seismic mine detector -- an audio representation of buried mines.

"When the system passes over a mine, you hear a resonance that’s easy to distinguish from the incident signal - it’s a hollow sound like what you hear when you tap on a wall to find a stud," Scott explains, adding that the operator would listen to this resonance via a headset, or the unit would have a speaker. "In some cases, this audio representation was clearer than the visual representation."

Because of this discovery, Georgia Tech will collaborate with CyTerra Corp. to evaluate the feasibility of incorporating the Georgia Tech seismic sensor into a handheld mine detector the company is producing for the U.S. Army.

CyTerra’s current handheld system combines a metal detector with ground-penetrating radar. "Integrating the capability that Georgia Tech has developed to acoustically measure vibrations will give us a triple-sensor device that should increase our ability to detect mines and reduce false alarms," says William Steinway, executive vice president of CyTerra Corp. based in Waltham, Mass.

"No single sensor has proven capable of detecting mines well with acceptable false alarms in all environmental conditions," Scott says, noting that what works best in a given situation depends on the type of mine and where it’s buried. "A fusion of multiple sensors will most likely be necessary to get good performance in all conditions. Our seismic sensor is ideal to fuse with other types of sensors like GPRs and metal detectors."

In June 2003, researchers conducted their eighth field test, traveling to Skidaway Island, Ga. This was the team’s third visit to Skidaway, and data derived from this field test was consistent with earlier measurements -- an encouraging result.

Even more important, researchers were able to test techniques for making the mine-detection system faster:
  • Shortening the acoustical signal. In laboratory tests, researchers had been using a four-second signal to displace the soil. "If you put more sound into the ground, the sound has more interaction with the mine. Yet you pay a penalty because it takes longer to measure," McCall explains. As field tests began, researchers encountered less background noise than they had in the lab, which enabled them to send a shorter signal. At Skidaway, researchers reduced the acoustical signal to one-sixteenth of a second and were still able to detect mines.

  • Continuous scanning. With their current prototype system, researchers send a wave, take a measurement, then move the system 2 centimeters and repeat the process - a laborious task when measuring a square meter. At Skidaway, the researchers attempted to scan continuously, which accelerated the measuring process dramatically (by nearly 25 times) and still yielded good data.

"The positioner we used was never intended to do this, so with different hardware we should be able to get better results," says James S. Martin, a senior research engineer from Georgia Tech’s School of Mechanical Engineering. "Even so, this was much better than the snail’s pace at which we had been working."

Two radar sensors have been used in the current system to demonstrate that interactions between multiple sensors are not problematic. But adding more sensors would make the system faster. "Anytime you increase the number of sensors you’re using, you can decrease the measurement time," says Gregg Larson, another School of Mechanical Engineering researcher on the project.

Bottom line, researchers say the time required to measure a square meter can be sliced from several hours to less than a minute. Faster measurements are crucial as the team develops a prototype for more extensive field tests.

"We need to measure larger areas and gather more information about different mines, soil properties and environmental conditions," Scott says, noting that data helps the researchers improve their numerical models and signal-processing algorithms.

"Testing in different soil properties is important because the soil’s complicated structure makes it to difficult to detect mines. You can’t just look up the soil parameters we need in a book," he adds.

Jane Sanders | Georgia Tech
Further information:
http://gtresearchnews.gatech.edu/newsrelease/minedetect.htm

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>