Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exposing Buried Danger: Field Tests Advance Seismic Landmine Detection System

02.03.2004


A landmine detection system under development by a team of Georgia Tech researchers uses high-frequency seismic waves to displace soil and objects in it slightly. A non-contact radar sensor then measures the results, creating a visual representation of the displacement that reveals the buried mines.
Georgia Tech Photo: Gary Meek


Waymond R. Scott, Jr., a professor in Georgia Tech’s School of Electrical and Computer Engineering, is the principal investigator for the landmine detection project.
Georgia Tech Photo: Gary Meek


Millions of land mines are buried worldwide, and these weapons were responsible for an estimated 16,000 injuries and deaths in 2002.

Georgia Institute of Technology researchers are making progress with a landmine detection system that could ultimately help prevent such losses. The system uses high-frequency seismic waves to displace soil and objects in it slightly (less than one ten-thousandth of an inch). A non-contacting radar sensor then measures the results, creating a visual representation of the displacement that reveals the buried mines.

This seismic-wave system presents potential advantages over existing electromagnetic-wave techniques used in metal detectors and ground-penetrating radars (GPR). Although metal detectors and GPRs can locate mines successfully, they have more trouble locating the small, plastic anti-personnel mines that have become more prevalent. Metal detectors and GPRs can also be confused by ground clutter -- rocks, sticks or scraps of metal - sometimes resulting in many false alarms.



Yet because plastic mines have very different mechanical properties from soil and ground clutter, the seismic waves are capable of detecting and distinguishing these mines from common ground clutter. This has been demonstrated in laboratory and limited field tests.

"When a wave hits a land mine, resonance builds over the top of the mine, triggering a vibration which is bigger than the wave that excited it - and the vibration persists longer," says Waymond R. Scott Jr., a professor in Georgia Tech’s School of Electrical and Computer Engineering (ECE) and principal investigator on the project.

Sponsored by the U.S. Office of Naval Research, the U.S. Army Research Office and the U.S. Army Night Vision & Electronic Sensors Systems Directorate, the mine-detection project involves researchers from various departments at Georgia Tech. This multidisciplinary team started work in 1997 with computer modeling and lab experiments. Field testing began in fall 2001, and during the past two years, the researchers have conducted tests at six sites.

In November 2002, the researchers traveled to a government testing facility in a temperate climate where they detected six different anti-tank and anti-personnel mines. "Our results there were comparable to what we saw in the lab, which was very significant. That was a big hurdle for us," Scott says.

Field tests at government facilities give the researchers greater credibility because conditions are more realistic, and they can compare results to data from other research teams. What’s more, the mines at government test sites have been buried for several years, which complicates detection.

"It’s much easier to detect a mine that’s been buried recently because you’ve disturbed the soil," says George McCall, a senior research engineer in the Georgia Tech Research Institute’s Electro-Optics, Environment and Materials Laboratory. "After a land mine has been in the ground for a while, the soil becomes weathered and more compact. This makes it harder to find, so it’s a better test for our detection system."

In February 2003, the researchers traveled to another government testing facility where the ground was frozen. This test broadened the scope of environmental conditions under which the mine detection system had been used.

Testing in a variety of sites is important because different environmental conditions affect how far and how fast seismic waves travel through the earth. That, in turn, affects how waves interact with buried mines and what kind of signal processing is required to image the mines.

The field tests have also given the researchers a chance to develop another aspect of the seismic mine detector -- an audio representation of buried mines.

"When the system passes over a mine, you hear a resonance that’s easy to distinguish from the incident signal - it’s a hollow sound like what you hear when you tap on a wall to find a stud," Scott explains, adding that the operator would listen to this resonance via a headset, or the unit would have a speaker. "In some cases, this audio representation was clearer than the visual representation."

Because of this discovery, Georgia Tech will collaborate with CyTerra Corp. to evaluate the feasibility of incorporating the Georgia Tech seismic sensor into a handheld mine detector the company is producing for the U.S. Army.

CyTerra’s current handheld system combines a metal detector with ground-penetrating radar. "Integrating the capability that Georgia Tech has developed to acoustically measure vibrations will give us a triple-sensor device that should increase our ability to detect mines and reduce false alarms," says William Steinway, executive vice president of CyTerra Corp. based in Waltham, Mass.

"No single sensor has proven capable of detecting mines well with acceptable false alarms in all environmental conditions," Scott says, noting that what works best in a given situation depends on the type of mine and where it’s buried. "A fusion of multiple sensors will most likely be necessary to get good performance in all conditions. Our seismic sensor is ideal to fuse with other types of sensors like GPRs and metal detectors."

In June 2003, researchers conducted their eighth field test, traveling to Skidaway Island, Ga. This was the team’s third visit to Skidaway, and data derived from this field test was consistent with earlier measurements -- an encouraging result.

Even more important, researchers were able to test techniques for making the mine-detection system faster:
  • Shortening the acoustical signal. In laboratory tests, researchers had been using a four-second signal to displace the soil. "If you put more sound into the ground, the sound has more interaction with the mine. Yet you pay a penalty because it takes longer to measure," McCall explains. As field tests began, researchers encountered less background noise than they had in the lab, which enabled them to send a shorter signal. At Skidaway, researchers reduced the acoustical signal to one-sixteenth of a second and were still able to detect mines.

  • Continuous scanning. With their current prototype system, researchers send a wave, take a measurement, then move the system 2 centimeters and repeat the process - a laborious task when measuring a square meter. At Skidaway, the researchers attempted to scan continuously, which accelerated the measuring process dramatically (by nearly 25 times) and still yielded good data.

"The positioner we used was never intended to do this, so with different hardware we should be able to get better results," says James S. Martin, a senior research engineer from Georgia Tech’s School of Mechanical Engineering. "Even so, this was much better than the snail’s pace at which we had been working."

Two radar sensors have been used in the current system to demonstrate that interactions between multiple sensors are not problematic. But adding more sensors would make the system faster. "Anytime you increase the number of sensors you’re using, you can decrease the measurement time," says Gregg Larson, another School of Mechanical Engineering researcher on the project.

Bottom line, researchers say the time required to measure a square meter can be sliced from several hours to less than a minute. Faster measurements are crucial as the team develops a prototype for more extensive field tests.

"We need to measure larger areas and gather more information about different mines, soil properties and environmental conditions," Scott says, noting that data helps the researchers improve their numerical models and signal-processing algorithms.

"Testing in different soil properties is important because the soil’s complicated structure makes it to difficult to detect mines. You can’t just look up the soil parameters we need in a book," he adds.

Jane Sanders | Georgia Tech
Further information:
http://gtresearchnews.gatech.edu/newsrelease/minedetect.htm

More articles from Process Engineering:

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

nachricht Quick and safe laser joining of steel-aluminum mixed connections
05.06.2018 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>