Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using water as a lens to shrink chip dimensions

01.03.2004


Thanks in part to highly accurate measurements made by National Institute of Standards and Technology (NIST) researchers, semiconductor manufacturers will be able to pursue a new production method that will enable them to produce new generations of computer chips using existing equipment---saving the industry hundreds of millions of dollars.



Creating ever more powerful computer chips relies on being able to increasingly miniaturize the features on those chips. Industry had thought it might be nearing the end of the useful life of equipment that creates features using 193 nanometer (nm) wavelength light.

However, a new method called immersion lithography uses a thin layer of water like a lens to shorten the effective wavelengths of ultraviolet light used in patterning semiconductor chips. The method relies on the fact that light travels slower through water than air. The frequency of the light remains the same, so the distance between peaks (the wavelength) must shorten to compensate.


The method should enable manufacturers to use 193 nm equipment to create circuit lines and other features at least as small as 45 nm. Such a breakthrough allows manufacturers to create much more powerful chips while getting more life out of their current fabrication equipment, which can cost around $20 million per tool.

The industry began to take immersion lithography seriously about a year ago. With the support of International SEMATECH, the semiconductor industry’s R&D consortium, NIST scientists made highly accurate measurements of a property called refractive index, a measure of how much ultraviolet light at a wavelength of 193 nm bends when it moves from air to water. This new data helped enable the semiconductor industry to design immersion lithography systems.

NIST researchers described key results of their work at the International Society for Optical Engineering’s Microlithography 2004 conference held Feb. 23-28 in Santa Clara, Calif.

The researchers also are working with industry on new immersion fluids for 157 nm wavelength chipmaking tools, so that this equipment can produce features of 32 nm or below.

Scott Nance | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>