Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using water as a lens to shrink chip dimensions

01.03.2004


Thanks in part to highly accurate measurements made by National Institute of Standards and Technology (NIST) researchers, semiconductor manufacturers will be able to pursue a new production method that will enable them to produce new generations of computer chips using existing equipment---saving the industry hundreds of millions of dollars.



Creating ever more powerful computer chips relies on being able to increasingly miniaturize the features on those chips. Industry had thought it might be nearing the end of the useful life of equipment that creates features using 193 nanometer (nm) wavelength light.

However, a new method called immersion lithography uses a thin layer of water like a lens to shorten the effective wavelengths of ultraviolet light used in patterning semiconductor chips. The method relies on the fact that light travels slower through water than air. The frequency of the light remains the same, so the distance between peaks (the wavelength) must shorten to compensate.


The method should enable manufacturers to use 193 nm equipment to create circuit lines and other features at least as small as 45 nm. Such a breakthrough allows manufacturers to create much more powerful chips while getting more life out of their current fabrication equipment, which can cost around $20 million per tool.

The industry began to take immersion lithography seriously about a year ago. With the support of International SEMATECH, the semiconductor industry’s R&D consortium, NIST scientists made highly accurate measurements of a property called refractive index, a measure of how much ultraviolet light at a wavelength of 193 nm bends when it moves from air to water. This new data helped enable the semiconductor industry to design immersion lithography systems.

NIST researchers described key results of their work at the International Society for Optical Engineering’s Microlithography 2004 conference held Feb. 23-28 in Santa Clara, Calif.

The researchers also are working with industry on new immersion fluids for 157 nm wavelength chipmaking tools, so that this equipment can produce features of 32 nm or below.

Scott Nance | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Process Engineering:

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>