Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


3D fabrication technique uses light-activated molecules to create complex microstructures


A three-dimensional microfabrication technique that uses a unique class of light-activated molecules to selectively initiate chemical reactions within polymers and other materials could provide an efficient way to produce complex structures with sub-micron features.

Georgia Institute of Technology Professors Seth Marder (left) and Joe Perry pose with laser equipment they use to write complex 3D structures in polymers and other materials.

Known as "two-photon 3D lithography," the technique could compete with existing processes for fabricating microfluidic devices, photonic bandgap structures, optical storage devices, photonic switches and couplers, sensors, actuators, micromachines -- and even scaffolds for growing living tissue.

Georgia Institute of Technology Researchers Seth Marder and Joseph Perry will describe the technique February 15 at the annual meeting of the American Association for the Advancement of Science (AAAS).

"We have developed a disruptive platform technology that we believe will provide broad new capabilities," said Marder, a professor in Georgia Tech’s School of Chemistry and Biochemistry. "We believe this technique provides a real competitive advantage for making complicated three-dimensional microstructures."

The technique uses a family of organic dye molecules known as Bis-donor phenylene vinylenes that have a special ability to absorb two photons of light simultaneously. Once excited, the molecules transfer an electron to form a simple acid or a radical group that can initiate a chemical reaction -- such as polymer cross-linking or ion reduction.

By adding small concentrations (0.1 percent) of the molecules to a resin slab containing cross-linkable acrylate monomer, for example, researchers can use a focused near-infrared laser beam to draw patterns and initiate cross-linking reactions only in material exposed to the light. The reactions can make that portion of the slab insoluble, allowing the remainder to be washed away to leave a complex three-dimensional structure.

The researchers have demonstrated the ability to create both positive and negative resists using two-photon activated reactions to alternatively create soluble or insoluble 3D patterns. Beyond polymers, Perry and Marder have demonstrated the fabrication of tiny silver wires from patterns written in materials containing silver nanoparticles and ions.

The molecules developed by Marder and Perry are hundreds of times more efficient at absorbing two photons than previous photoactive materials. That efficiency allows them to write 3D patterns in polymer slabs that are typically 100 microns thick, at light intensities low enough to avoid damaging the materials.

The laser writing process takes advantage of the fact that the chemical reaction occurs only where molecules have absorbed two photons. Since the rate of two-photon absorption drops off rapidly with distance from the laser’s focal point, only molecules at the focal point receive enough light to absorb two photons.

"We can define with a very high degree of precision in the x, y and z coordinates where we are getting excitation," Marder explained. "Using 700-nanometer light, the patterning precision can be about 200 nm across by 800 nm in depth."

By scanning the laser in the sample while turning the laser off and on, Perry’s group has created a variety of structures, including objects with moving parts like gears and chains. Three-dimensional structures produced by the technique could be used as molds or templates for mass-producing other structures through simple stamping processes. The technique could also be used to create textured surfaces on which tissues can be grown, or optical elements such as photonic band-gap structures used to manipulate light.

For producing 3D microstructures, the simple two-photon technique could compete with complex multi-step fabrication processes that use lithography, etching and layering technologies borrowed from the microelectronics industry. However, the two-photon technique can produce only one structure at a time, while the microelectronics-based processes simultaneously generate hundreds or thousands of identical structures.

Right now, that makes the new system more suitable for adding specialized 3D structures to microsystems, prototypying new structures or making molds than for producing entire systems, notes Perry, also a professor in Georgia Tech’s School of Chemistry and Biochemistry. Producing each structure now requires about 25 seconds, but increases in speed could make mass-production feasible.

"We are working to integrate the technologies and develop a system that should be able to operate at a thousand times the throughput of the current system," he said. "A single 3D fabrication system should be able to generate about a million individual device structures per day. With a production facility using a number of fabrication systems, there is potential for certain types of mass production."

The researchers envision tabletop fabrication machines that would use a computer-generated design system to laser write the desired structures. A cartridge containing the polymer film would then be removed for chemical development.

To move their technologies into the commercial world, Marder and Perry have helped form a company known as Focal Point Microsystems. The firm has licensed the technologies, which were developed when the scientists worked at the California Institute of Technology and the University of Arizona before joining Georgia Tech last summer.

In collaboration with researchers at Arizona and Cornell, Marder and Perry have also been examining the fluorescent properties of the materials for possible applications in biological imaging. The molecules also have properties that are of interest for photodynamic therapy, which would use light to destroy cancer cells.

For the future, Marder and Perry hope to continue improving their dyes, increasing the resolution of the laser writing process, expanding their family of materials – and better understanding the process. "The scientific challenges are getting things smaller, writing faster and increasing the number of materials in which you can write," Perry said.

The research has been supported by the National Science Foundation, National Institutes of Health, the Air Force Office of Scientific Research, Office of Naval Research and Defense Advanced Research Projects Agency.

Technical Contacts:
Seth Marder 404-385-6048; E-mail: or
Joe Perry 404-385-6046; E-mail:

John Toon | EurekAlert!
Further information:

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>