Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A precision metal-cutting tool for use in automated high volume manufacturing

05.02.2004


Cutting high-thickness metal sheets is a basic manufacturing process common to a wide range of industrial sectors, from heavy carpentry to ship-building. Laser-cutting technology ought, in theory, to have significant advantages over traditional cutting processes, among them high cutting speed, no tool wear and a reduction in the transfer of energy to the piece of metal being cut. Yet despite the fact that commercial laser-cutting systems have been on the market for a decade, their use has not become widespread.



The problem lies in the extreme sensitivity of the process to external disturbances and in the difficulties in controlling and tuning the variables of the laser-cutting process. These make it difficult to predict and model the cutting trajectory that the laser beam should follow. Even very slight changes in the metal’s chemical composition can halt the cutting process, bringing production to a standstill. Consequently the process has to be constantly monitored and adjusted by human operators.

The three partners of project E! 1784 EUROLASER PUBLICS have devised a commercial solution in the form of a fully automated, high power laser-cutting robot which is capable of continuously cutting metals up to 20mm thick in 2D and 3D. A key innovation in the process is to simulate the cut first, to guarantee accuracy. The system enables manufacturers to dispense with human supervision as sensors automatically recognise and correct any anomalies in the cutting process.


The result is a robotic system which will expand the use of lasers beyond the current supervised, small-scale applications into highly automated high volume manufacturing, and at much the same price as traditional laser-cutting systems. European manufacturers will have a cost-effective precision cutting tool which guarantees high cutting quality and uninterrupted production – crucial factors in gaining and maintaining a competitive advantage.

“The two frontiers of laser-cutting machinery are quality and robustness and our solution advances both of these,” says Piero Chiabra of Italian lead partner Prima Industrie S.P.A., the leading European manufacturer of industrial robots for welding, cutting and laser applications. “Industrial laser cutting will now have a higher presence worldwide and is expected over the next 5 to 10 years – partially as a result of this project – to achieve even better performances, to the point of eventually replacing existing punching machines in the thin metal sheet market.”

Prima Industrie will be marketing the machines worldwide and some are already on the market. The project has officially finished, but work continues on fine-tuning the machines, with the final product expected to be ready for market around the end of 2004.

“The company anticipates a significant increase in turnover as consequence of the project,” says Piero Chiabra. “The market has grown faster than expected - before the project started we forecasted that sales of the system would reach 60 a year by 2006, but this prediction is already out of date.

“EUREKA’s endorsement has been invaluable – it allowed us to obtain the official funding necessary to get the project successfully to completion. For the partners, it was a mutually beneficial relationship and we plan to work together again. We hope shortly to announce a new project, E! 2791 FACTORY PAMELA, to develop a very high performance laser system for cutting metal sheet.”


EUREKA is …
A European network for market-oriented R&D
- strengthening European competitiveness
- promoting innovation in market-oriented collaborative projects
- involving industry, research institutes and universities across Europe
- resulting in innovative products, processes and services.

Julie Sors | alfa
Further information:
http://www.eureka.be/publics

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>