Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cryogenic refrigerator dips chips into a deep freeze

02.02.2004


In a major advance for cryogenics, researchers at the National Institute of Standards and Technology (NIST) have developed a compact, solid-state refrigerator capable of reaching temperatures as low as 100 milliKelvin. The refrigerator works by removing hot electrons in a manner similar to an evaporative air-conditioner or "swamp cooler."



When combined with an X-ray sensor, also being developed at NIST, the instrument will be useful in semiconductor manufacturing for identifying trace contaminants and in the astronomical community for X-ray telescopes. The device can be made in a wide range of sizes and shapes, as well as readily integrated with other cryogenic devices ranging in size from nano-meters to millimeters.

A report of the work is featured on the cover of the January 26, 2004, issue of Applied Physics Letters. "The idea is to use a solid-state refrigerator for on-chip cooling of these cryogenic sensors," says Anna M. Clark, the report’s lead author. "We have a working refrigerator that reduces temperatures low enough to be used with highly sensitive X-ray detectors. These detectors require subKelvin temperatures to minimize thermal noise and maximize their resolution."


Current equipment capable of cooling to 100 milliKelvin is bulky and expensive. By combining an on-chip cooler with an X-ray sensor, the NIST device may reduce substantially the weight and cost of such equipment.

The refrigerator is made from a sandwich of nomal- metal/insulator/superconductor junctions. When a voltage is applied across the "sandwich," high-energy (hot) electrons tunnel from the normal metal through the insulator and into the superconductor. As the hottest electrons leave, the temperature of the normal metal drops dramatically.

Gail Porter | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>