Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic milking wins further investment

09.01.2004


Scottish company IceRobotics has taken a further step towards bringing its innovative robotic milking technology to market thanks to a second round investment package of £430,000. This includes £75,000 from NESTA (the National Endowment for Science, Technology & the Arts), the organisation that invests in UK creativity and innovation.



IceRobotics has developed a sophisticated vision-based sensor that can precisely target and track a cow’s teats, capturing the 3D coordinate data required to then attach robotic milking equipment. The system uses stereo vision in the same way as the human eye, replacing laser technologies used at present. Alongside this the company is developing a technology that uses a dextrous mechanical actuator that bends like an elephant’s trunk, so that fragile or delicate objects like a cow’s teat can be easily manoeuvred without causing injury. Together these technologies will be key components of the latest generation of milking equipment that will improve hygiene for livestock and increase milk yield for farmers.

Research has long shown that cows produce more milk if they are milked more frequently. More recent studies have found cow’s preferred milking time to be between 11pm and 2am, just before the cow settles down to sleep and a common milking time for a calf. The time when most dairy farms do their morning milking – between 3am and 6am – instead coincides with the cow’s natural “deep sleep” time. This is because dairy farm routines have been dictated by regimes that suit the farmer rather than the cow. In contrast, robotic milking systems allow the cow voluntarily access whenever she wants, and without the farmer needing to be present. As well as resulting in happier cows, this can increase milk yields by as much as 20% due to the cow being milked three or even four times a day.


Automated Milking systems in the diary industry are still relatively new, with around 2,000 systems having been installed worldwide so far. However, due to the improved efficiences and increased yields these will pay back their worth in three to five years. The potential market for robotic milking systems is estimated at 180,000 farms worldwide, and two thirds of these are expected to install a robot milker over the next 20 years.

NESTA originally invested £98,000 in IceRobotics in 2002 to allow the company to design and build the technology and generate the commercialisation plan. On the back of early achievements made by the company in both areas and the good commercial promise shown, second round investment has been secured to finance the next phase of the company’s development through to 2005.

NESTA, Scottish Enterprise and Aberdeen Murray Johnstone Private Equity are the main equity investors in the current financing round.

NESTA’s Innovation & Invention Director Mark White said:

“NESTA is proud to be making this second round investment in IceRobotics and we are confident that the company can go on to capitalise on it’s early success and achieve a sustainable commercial future. The new investment illustrates not only NESTA’s commitment to IceRobotics and the commercialisation of innovation in the UK more widely, but also underlines our ability and willingness to continue to back early stage ventures that show demonstrable commercial promise.”

NESTA | alfa
Further information:
http://www.nesta.org.uk

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>