Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic milking wins further investment

09.01.2004


Scottish company IceRobotics has taken a further step towards bringing its innovative robotic milking technology to market thanks to a second round investment package of £430,000. This includes £75,000 from NESTA (the National Endowment for Science, Technology & the Arts), the organisation that invests in UK creativity and innovation.



IceRobotics has developed a sophisticated vision-based sensor that can precisely target and track a cow’s teats, capturing the 3D coordinate data required to then attach robotic milking equipment. The system uses stereo vision in the same way as the human eye, replacing laser technologies used at present. Alongside this the company is developing a technology that uses a dextrous mechanical actuator that bends like an elephant’s trunk, so that fragile or delicate objects like a cow’s teat can be easily manoeuvred without causing injury. Together these technologies will be key components of the latest generation of milking equipment that will improve hygiene for livestock and increase milk yield for farmers.

Research has long shown that cows produce more milk if they are milked more frequently. More recent studies have found cow’s preferred milking time to be between 11pm and 2am, just before the cow settles down to sleep and a common milking time for a calf. The time when most dairy farms do their morning milking – between 3am and 6am – instead coincides with the cow’s natural “deep sleep” time. This is because dairy farm routines have been dictated by regimes that suit the farmer rather than the cow. In contrast, robotic milking systems allow the cow voluntarily access whenever she wants, and without the farmer needing to be present. As well as resulting in happier cows, this can increase milk yields by as much as 20% due to the cow being milked three or even four times a day.


Automated Milking systems in the diary industry are still relatively new, with around 2,000 systems having been installed worldwide so far. However, due to the improved efficiences and increased yields these will pay back their worth in three to five years. The potential market for robotic milking systems is estimated at 180,000 farms worldwide, and two thirds of these are expected to install a robot milker over the next 20 years.

NESTA originally invested £98,000 in IceRobotics in 2002 to allow the company to design and build the technology and generate the commercialisation plan. On the back of early achievements made by the company in both areas and the good commercial promise shown, second round investment has been secured to finance the next phase of the company’s development through to 2005.

NESTA, Scottish Enterprise and Aberdeen Murray Johnstone Private Equity are the main equity investors in the current financing round.

NESTA’s Innovation & Invention Director Mark White said:

“NESTA is proud to be making this second round investment in IceRobotics and we are confident that the company can go on to capitalise on it’s early success and achieve a sustainable commercial future. The new investment illustrates not only NESTA’s commitment to IceRobotics and the commercialisation of innovation in the UK more widely, but also underlines our ability and willingness to continue to back early stage ventures that show demonstrable commercial promise.”

NESTA | alfa
Further information:
http://www.nesta.org.uk

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>