Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Technology Goes Down To Earth To Support Mining

30.12.2003


Space exploration and underground mining both take place in extreme environments – so perhaps it is not too surprising that technology developed for one field is now being applied to the other.



ESA’s Technology Transfer Programme is accelerating space technology spin-offs to the mining and the minerals industry sector. In a recent workshop with representatives from the sector, several potential areas were identified as being suitable for cooperation.
"Today 7% of our completed technology transfers have been to the mining and smelting industrial sector, so we know it is an area where advanced technologies have the potential to improve both industrial performance and working conditions for the employees," says Pierre Brisson, Head of ESA’s Technology Transfer and Promotion Office.

"To take this a step further and to accelerate the spin-off process we decided to bring together industrial key players in the mining industry with our technology experts. During the workshop several space technology areas were identified, which potentially could resolve common problems today in mining and mineral production."



The event was organised by ESA’s Technology Transfer and Promotion Office and the European Mineral Resource RTD Council (EMiReC) with the support of the Thematic Network on European Sustainable Mining and Processing Industries (NESMI).

Altogether about 90 people participated in the workshop, with 35 from the mining and minerals industry sector. The rest were from non-mining companies already involved in the transfer of space technology to the sector and ESA specialists bringing expertise in specific space technology fields.

Chris Cross, Manager of Rio Tinto’s External Research Programmes, participated to see what space technology could bring, his specific interest is robotic systems for underground mining. Rio Tinto, which is one of the leaders in mining operating worldwide, is strongly represented in North America and Australia and has mining operations for aluminium, copper, diamonds, coal, uranium, gold, industrial minerals and iron. Some of their activities, now done primarily by surface mining, are to be changed into underground mines and robotics may be a solution to automating production.

Others participants included Deutsche Steinkohle AG (DSK) which carries out hard coal mining in the Ruhr, Saar and Ibbenbüren districts of Germany; DMK Environmental Engineering from Utah, which assists clients in all aspects of environmental engineering; Shell International, a global group of energy and petrochemical companies with operations in over 145 countries; and Gullivare Hard Rock Research (NGRR) from Sweden.

"We are looking for sensors and processing methods to determine, early in the mining process, the exact content of the mined stones to optimise mineral processing, such as stone crunching," said Åsa Sundqvist, Project Manager from NGRR.

ESA presented several advanced technologies identified as potential candidates for use in the mining industry, such as space robotics for planetary surface exploration, life support systems, and the Galileo and EGNOS navigation systems.

"The miner and the astronaut both work in equally harsh environments, although in very different ways," said Geoff Liggins from C-Core in Canada, which works with ESA’s Harsh Environment Initiative (HEI), which transfers technologies from space to sectors such as oil, gas, mining and tunnelling.

"The key is know-how. Typically the technology itself, in the form that is supplied in space, cannot be directly applied to industry but the know-how and expertise to develop that technology is of great value."

Inspecting for cracks in concrete tunnels or the rock walls of mines can now be done by CRIS, which was developed under HEI and uses sophisticated ground penetration radar techniques to detect the cracks.

"The history of CRIS began back in 1994 with Ginger, a guidance ground penetration radar we developed for ESA, and which was planned to go on a planetary rover on the Moon or Mars," said Gunnar Triltzsch from Radar System Technik GmbH from Germany. "In 2000 we used the same technology to build CRIS, to identify cracks in a hard rock environment." The handheld device has been successfully tested and demonstrated in Canadian mines.

Stefano Carosio from D’Applolonia S.A. in Italy illustrated another technology transfer project for shape memory alloys, a special metal which reverts to a previous shape when heated. For satellites this material is used to unfold solar panels after launch. The same material can now be used to split rocks very precisely.

Technologies from the Smart-1 lunar mission, Mars Express and Venus Express were also presented and illustrated a variety of innovations developed by ESA to overcome challenges in exploring other planets such as searching, digging, extracting and examining minerals and regolith samples on other planets. These tools and techniques could have similar potential back on Earth.

"The summing-up session made it clear that there were common interests between the mining industry and space," said David Raitt, ESA’s Senior Technology Transfer Officer.

Christian Fouillac, President of EmiReC, noted "the technologies developed by the space industry show some promising characteristics for us. One example is mineralogy and chemical analysis by remote spectrometry for mapping materials. Another point is material performance. We have also seen space systems for drilling in hard rock conditions where the energy consumption of the drilling has been reduced to a very low level - this is very attractive for us."

"Other areas of special interest are the handling of waste water and waste treatment contamination, and gas detection systems used in the life support programme developed by the space industry. We want to evaluate how to transfer this to increase safety in underground mines."

In reply to Raitt’s question "How does the space technology compare to the technology already used in the mining industry?" Karsten Jäger from Deutsche Steinkohle AG (DSK) answered, "for mines keep it simple and strong. We need less precise but more robust technology, although strong developments in mining are towards automating operations with remote control. All techniques have to be cost effective on the one hand and very robust on the other. I feel that direct transfer of technology from space to underground is not so easy as it looks. There are some possibilities, and we will have a study next year, together with MST, to start looking for technologies to come inside our operations." MST Aerospace is ESA’s Technology Transfer broker in Germany.

Corina Hebestreit, Secretary General of Euromines - the European Association of Mining Industries, said, "a lot of the space technologies are of interest to the mining industry and we would like to continue to work with ESA on this by holding brainstorming sessions on dedicated topics involving specialists from both sides."

In his conclusion, David Raitt noted that it was one of several similar events and one that showed great promise – not least because of the high degree of interest and participation from the mining and mineral processing sector, as well as from ESA departments themselves. Since the workshop took place there have already been several initiatives and follow-ups which will ensure a durable cooperation.

Pierre Brisson | European Space Agency
Further information:
http://www.esa.int/export/esaCP/SEMA8V274OD_index_0.html

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>