Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

You can’t tell a rock by its rind: How a tiny abrasion tool will help reveal geology of Mars

22.12.2003


Facelifts can sag. Botox is temporary. But modern science has a new way to return youth to weathered faces: the rock abrasion tool (RAT). If your dermatologist hasn’t heard of it, ask your local Mars scientist.



Billions of years of exposure to the sun, atmosphere and extremely fine Martian dust has given Mars rocks a weathered "rind," or exterior layer. The RAT, part of the science-instrument package carried by the two Mars rovers, Spirit and Opportunity, uses a diamond-tipped robotic grinding tool to scrape away this weathered exterior, revealing a fresh surface.

"Clearing away the dust and a weathered layer gives the science instruments access to the part of the rock that hasn’t changed since it was formed billions of years ago," says Cornell University alumnus Paul Bartlett. An employee of New York engineering firm Honeybee Robotics, Bartlett has been working on the RAT since the first concept drawings from Cornell professor of astronomy Steven Squyres arrived in his fax machine three years ago.


Spirit is scheduled to land on Mars on Jan. 3 at 11:35 p.m. EST. Opportunity will touch down on Jan. 25 at 12:05 a.m. EST.

The Jet Propulsion Laboratory in Pasadena, a division of the California Institute of Technology, manages the Mars Exploration Rover project for NASA’s Office of Space Science, Washington, D.C. Cornell, in Ithaca, N.Y., is managing the science instruments carried by the two rovers, with Squyres as principal investigator.

Access to the pristine rock interior is critical to understanding the history of the geology of Mars and to answering what Bartlett describes as the "big questions" to be solved by the rovers: Did water -- or even an environment suitable for life -- once exist on the red planet?

These big questions might be answered by a very small machine: The RAT weighs only 1 1/2 pounds and uses less power (30 watts) than most light bulbs. It is about the size of a soda can.

The RAT occupies the turret, or "hand," of the rover’s robotic arm, along with other rover science instruments for rock analysis, a microscopic imager and Mössbauer and alpha particle X-ray spectrometers. The agile arm, which has shoulder, elbow and wrist joints just like a human arm, presses the RAT up against a rock’s surface.

In just two hours, the RAT’s grinding wheel can shave off a disk about twice the diameter and thickness of a nickel from a hard rock surface. Two brushes sweep the resulting dust away from the hole to provide a clean surface for an up-close view.

Once the fresh surface is exposed, the imager and the spectrometers take over, peering through the abraded opening to perform a detailed analysis of the rock’s interior. So that scientists can learn about the processes that might have weathered the rock, the rover also records temperature and current readings from the RAT’s three motors while they grind away the exterior layer.

Bartlett notes that the breadth of his work on the RAT, which spans design, fabrication, assembly, testing and mission operations, "is a rare opportunity in engineering."

And working with Mars scientists also has stood out among his other assignments for Honeybee. One was building a robot for an art installation at Manhattan’s Whitney Museum of American Art. He discovered, he says, that "planetary scientists and avant-garde architects speak very different languages."

This release was prepared by Cornell News Service science-writer intern Kate Becker

David Brand | Cornell News
Further information:
http://www.news.cornell.edu/releases/Dec03/Mars.RAT.deb.html

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>