Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New-generation autonomous helicopter to create new era of human safety

17.12.2003


Australian scientists have developed a ’brain’, which enables the production of a world-first low-cost, intelligent small helicopter, set to end many difficult and dangerous tasks undertaken by humans.




The CSIRO Mantis can simply be told where to go and what to do, and it will go off, do the job and find its own way home, unassisted.

The low-cost CSIRO Mantis, described as a vertical take-off, unmanned aerial vehicle (UAV), provides a host of new ways of doing things.


Dr Peter Corke of CSIRO Complex Systems Integration says, "Mantis makes it possible for fleets of small drone helicopters to do jobs now done by conventional aircraft. This could lead to a quantum leap in the speed of air sea rescue efforts - covering many square kilometres faster by having many small aircraft searching at the same time".

"It could inspect and report on the condition of infrastructure such as powerlines, where currently manned, full-scale helicopters are used to look for faults and assist bushfire prevention by looking for close growing trees."

The CSIRO Mantis can take the human-risk from getting a closer than human-look underneath bridges, at high-rise building facades, at mine-faces for stability or even in building lift-wells.

Traffic monitoring, security and military applications offer a large number of other uses for small, intelligent UAVs such as the Mantis.

Dr Corke says, "The CSIRO Mantis overcomes many machine intelligence and cost issues, which have prevented the development of small, almost disposable unmanned air vehicles".

"It was also our aim to develop an inexpensive system where the cost of the electronics, now mostly almost ten times more expensive than the helicopter, would instead be about the same price".

"The major task in developing Mantis", Dr Corke says, "was to produce an inertial sensing system and a computer vision system to control and provide flight stability and to guide the aircraft".

"The inertial sensing system behaves somewhat like our inner ear, providing balance and indicating the orientation of the helicopter in the air. The instrument, custom developed by CSIRO (see photo), uses low-cost MEMS (Micro-Electro-Mechanical Systems) sensors and is fabricated from magnesium alloy and weighs only 75 g."

"This is much lighter than current technology and is one of the major reasons we were able to make the brains of the Mantis light enough to be carried by such a small helicopter", Dr Corke says.

The vision system uses two miniature cameras, and powerful CSIRO-developed software running on a medium-powered onboard computer.

"Just as we use our two eyes to estimate the distance of an object, the helicopter uses the data from the two cameras to estimate its height above ground, a very important thing to know."

"The computer also observes the changes in the image over time and from this it estimates its speed over the ground", says Corke.

Developing lightweight components and dealing with vibration has been an important factor of the success of the Mantis to date.

The Mantis is a little over 0.5 m high and just short of 1.5 m long, with a custom-built aluminium frame and landing gear.

The military are also interested in UAVs, and this technology has received a lot of media attention this year. Dr Corke says, "They have generally used very precise GPS guidance equipment, which require an expensive unit onboard the aircraft as well as expensive equipment on the ground".

"While GPS may seem like an ideal technique to use, it has many drawbacks in practice, particularly in built environments near large structures which can obscure or reflect the signals from the GPS satellites."

The CSIRO Mantis is ready to become a regular feature in everyday life in Australia, subject to being programmed for each task a potential customer may require it to perform.

Our civil aviation system has already introduced the world’s first regulations to allow appropriately equipped and certified UAVs to share the skies.

CSIRO is looking for partners interested in commercialising the Mantis’s brain for aftermarket applications for production helicopters.

For Further Information Contact:

George Curran, Industry Manager,
CSIRO Manufacturing & Infrastructure Technology 61 7 3327 4140
Email: George.Curran@csiro.au

Ken Anderson
Manager Marketing Communication
CSIRO Manufacturing & Infrastructure Technology 61 3 9545 2052, mobile: 0414 457 214
Email: Ken.Anderson@csiro.au

Rosie Schmedding | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=Prhelicopter

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>