Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New-generation autonomous helicopter to create new era of human safety

17.12.2003


Australian scientists have developed a ’brain’, which enables the production of a world-first low-cost, intelligent small helicopter, set to end many difficult and dangerous tasks undertaken by humans.




The CSIRO Mantis can simply be told where to go and what to do, and it will go off, do the job and find its own way home, unassisted.

The low-cost CSIRO Mantis, described as a vertical take-off, unmanned aerial vehicle (UAV), provides a host of new ways of doing things.


Dr Peter Corke of CSIRO Complex Systems Integration says, "Mantis makes it possible for fleets of small drone helicopters to do jobs now done by conventional aircraft. This could lead to a quantum leap in the speed of air sea rescue efforts - covering many square kilometres faster by having many small aircraft searching at the same time".

"It could inspect and report on the condition of infrastructure such as powerlines, where currently manned, full-scale helicopters are used to look for faults and assist bushfire prevention by looking for close growing trees."

The CSIRO Mantis can take the human-risk from getting a closer than human-look underneath bridges, at high-rise building facades, at mine-faces for stability or even in building lift-wells.

Traffic monitoring, security and military applications offer a large number of other uses for small, intelligent UAVs such as the Mantis.

Dr Corke says, "The CSIRO Mantis overcomes many machine intelligence and cost issues, which have prevented the development of small, almost disposable unmanned air vehicles".

"It was also our aim to develop an inexpensive system where the cost of the electronics, now mostly almost ten times more expensive than the helicopter, would instead be about the same price".

"The major task in developing Mantis", Dr Corke says, "was to produce an inertial sensing system and a computer vision system to control and provide flight stability and to guide the aircraft".

"The inertial sensing system behaves somewhat like our inner ear, providing balance and indicating the orientation of the helicopter in the air. The instrument, custom developed by CSIRO (see photo), uses low-cost MEMS (Micro-Electro-Mechanical Systems) sensors and is fabricated from magnesium alloy and weighs only 75 g."

"This is much lighter than current technology and is one of the major reasons we were able to make the brains of the Mantis light enough to be carried by such a small helicopter", Dr Corke says.

The vision system uses two miniature cameras, and powerful CSIRO-developed software running on a medium-powered onboard computer.

"Just as we use our two eyes to estimate the distance of an object, the helicopter uses the data from the two cameras to estimate its height above ground, a very important thing to know."

"The computer also observes the changes in the image over time and from this it estimates its speed over the ground", says Corke.

Developing lightweight components and dealing with vibration has been an important factor of the success of the Mantis to date.

The Mantis is a little over 0.5 m high and just short of 1.5 m long, with a custom-built aluminium frame and landing gear.

The military are also interested in UAVs, and this technology has received a lot of media attention this year. Dr Corke says, "They have generally used very precise GPS guidance equipment, which require an expensive unit onboard the aircraft as well as expensive equipment on the ground".

"While GPS may seem like an ideal technique to use, it has many drawbacks in practice, particularly in built environments near large structures which can obscure or reflect the signals from the GPS satellites."

The CSIRO Mantis is ready to become a regular feature in everyday life in Australia, subject to being programmed for each task a potential customer may require it to perform.

Our civil aviation system has already introduced the world’s first regulations to allow appropriately equipped and certified UAVs to share the skies.

CSIRO is looking for partners interested in commercialising the Mantis’s brain for aftermarket applications for production helicopters.

For Further Information Contact:

George Curran, Industry Manager,
CSIRO Manufacturing & Infrastructure Technology 61 7 3327 4140
Email: George.Curran@csiro.au

Ken Anderson
Manager Marketing Communication
CSIRO Manufacturing & Infrastructure Technology 61 3 9545 2052, mobile: 0414 457 214
Email: Ken.Anderson@csiro.au

Rosie Schmedding | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=Prhelicopter

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>