Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Hybrid Vehicle Will Enable US Scientists to explore the deepest parts of the world’s oceans

10.12.2003


For the first time since 1960, US scientists will be able to explore the deepest parts of the world’s oceans, up to seven miles below the surface, with a novel underwater vehicle capable of performing multiple tasks in extreme conditions. Researchers at the Woods Hole Oceanographic Institution (WHOI) are developing a battery-powered underwater robot to enable scientists to explore the ocean’s most remote regions up to 11,000 meters (36,000-feet) deep.

The hybrid remotely operated vehicle, or HROV, will be able to operate in two modes: as an autonomous, or free-swimming, vehicle for wide area surveys, and as a tethered, or cabled, vehicle for close-up sampling and other tasks. In the latter mode, it will use a novel fiber optic micro cable only one thirty-second of an inch thick, a major departure from the large heavy cables typically used with tethered vehicles. The deep-sea vehicle will require new technologies such as ceramic housings for cameras and other electronic equipment to withstand the pressures at the vehicle’s extreme operating depths.

Funding for the four-year, $5-million HROV project is provided by the National Science Foundation, with additional support from the US Navy and the National Oceanic and Atmospheric Administration. Principal investigators are Andrew Bowen and Dana Yoerger of WHOI’s Deep Submergence Laboratory (DSL) in the Applied Ocean Physics and Engineering Department and Louis Whitcomb, an Associate Professor in the Department of Mechanical Engineering at Johns Hopkins University. Whitcomb is also a visiting investigator in DSL. The new vehicle will undergo initial trails in three years.



The HROV will provide routine access for scientific research in areas of the ocean that are virtually unexplored - the deep trenches, which are some of the most active earthquake zones on earth, deep transform faults and under the polar ice caps. It will be compact enough for quick deployment from virtually any ship in the world for rapid response to changing environmental conditions, such as volcanic eruptions or earthquakes.

The oceans cover over 70 percent of our planet and average two miles in depth. The deepest place on earth, the Challenger Deep in the Mariana Trench in the Western Pacific, plunges almost seven miles - deeper than Mount Everest is high. Humans have been to the bottom of the Mariana Trench only once, in 1960, when the US Navy bathyscaphe Trieste descended with Don Walsh and Jacques Piccard. The Japanese remotely operated vehicle (ROV) KAIKO dove to the bottom of the trench in 1995. KAIKO was lost earlier this year, and no operational vehicles currently exist that are capable of reaching this depth.

Unlike other vehicles, the HROV will be designed to be reconfigured aboard ship to operate in two different modes, depending on the scientific need. As an autonomous or free-swimming vehicle, the HROV will be launched from a surface vessel and descend through the ocean. During its journey to the bottom it will collect information and images, mapping and surveying the seafloor for up to 36 hours on battery power. This capability will permit scientists to examine broad areas of the seafloor efficiently and to find areas worthy of more detailed study. When its mission is complete, the vehicle will return to the surface where the stored data can be recovered and analyzed. When areas of further research interest are identified, the vehicle can be reconfigured in its remotely operated or tethered mode. This can be done on the same research cruise, thereby optimizing scientific return and avoiding lengthy delays in making important scientific discoveries.

After transformation on deck to a remotely operated vehicle (ROV), the HROV is launched using an armored fiber optic cable and depressor. Once clear of the vessel and surface currents, the vehicle is released from the depressor at about 1,000 meters depth (about 3,300 feet) and free falls to the seafloor using a descent anchor assembly. During the free fall it pays out the fiber optic micro cable from two small canisters, one mounted on the depressor and the other on the descent anchor assembly attached to the vehicle.

The HROV uses the fiber optic cable to communicate with the support ship but not to supply power. The small, lightweight cable, only one-thirty second of an inch in diameter and adapted from US Navy applications, allows the HROV to operate and maneuver at unprecedented depths without the high-drag and expensive cables and winches typically used with deep sea ROV systems. Once the HROV reaches the bottom, the descent anchor assembly is jettisoned and the vehicle continues its mission while paying out up to 20 kilometers (about 11 miles), of micro cable from a third canister mounted on the vehicle.

Using two-way, real time communications via the micro fiber, the HROV is remotely controlled by an operator on the surface vessel. Mission durations are planned to be as long as 36 hours and include collecting samples, taking photographs and video, and conducting detailed mapping and seafloor characterization. When the mission is complete, the HROV jettisons the micro fiber and drops its ascent weights for the trip to the surface. Untethered, it guides itself to the armored cable depressor near the surface, latches onto the cable to the surface ship above and is recovered aboard ship. The micro-fiber is then recovered for re-use.

"The HROV will enable, for the first time, routine scientific research in the deepest parts of the ocean, from 6,500 meters to 11,000 meters, a depth we currently cannot reach," says Richard Pittenger, WHOI Vice President for Marine Operations. "It will also afford access to other very hard to reach regions such as under the Arctic ice cap. The HROV’s real-time, wide-band link to the surface will put the researcher in the loop to view, assess and command the vehicle throughout the duration of dive missions. It is the first capable and cost-effective technology that will enable scientists to pursue research projects on a routine basis in areas they have long wanted to study but have been unable to reach. HROV technology will help answer many questions about the deep sea."

Woods Hole Oceanographic Institution (WHOI) is a private, independent marine research and engineering and higher education organization located in Falmouth, MA. Its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment. Established in 1930 on a recommendation from the National Academy of Sciences, the Institution operates the US National Deep Submergence Facility that includes the deep-diving submersible ALVIN, a fleet of global ranging ships and smaller coastal vessels, and a variety of other tethered and autonomous underwater vehicles. WHOI is organized into five departments, interdisciplinary institutes and a marine policy center, and conducts a joint graduate education program with the Massachusetts Institute of Technology.

Shelley Dawicki | WHOI
Further information:
http://www.whoi.edu/media/hrov.html

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>