Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Univ. of Mich. researchers reduce interference from microwave ovens

04.12.2003


Researchers at the University of Michigan College of Engineering have developed an elegantly simple technique that dramatically reduces the interference microwave ovens create in telephones and wireless computer networks.



Worldwide, there are hundreds of millions of microwave ovens in kitchens, offices and laboratories, each with a magnetron that creates communications problems ranging from an aggravating crackle during a friendly telephone call, to the disruption of 911 calls and the flow of data in wireless computer networks.

Although these effects are difficult to quantify, it’s safe to say they’re an annoyance, an economic drain and potentially life-threatening.


The basic difficulty is that microwave ovens operate at a frequency near 2.45 GHz – about the same frequency at which telephones and wireless computers operate. In the microwave oven there are two magnets, one at each end of the magnetron. In an amazingly simple discovery, University of Michigan College of Engineering Professor Ronald Gilgenbach and a research team composed of Professor Y.Y. Lau and graduate student, Bogdan Neculaes, all from the department of Nuclear Engineering and Radiological Sciences, found that when they added four permanent magnets to the outside of one of the standard magnets, they could disrupt the magnetic field in such a way that it becomes benign to nearby electrical devices, yet doesn’t significantly affect the performance of the microwave oven.

The discovery could also have an enormous impact on the signal-to-noise ratio in radar and in the development of a power source for inexpensive deep-space exploration, and advanced electroporation for highly improved cancer treatment.


ABOUT THE UNIVERSITY OF MICHIGAN COLLEGE OF ENGINEERING
Celebrating its 150th anniversary this year, the University of Michigan College of Engineering is consistently ranked among the top engineering schools in the world. The College is composed of 11 academic departments: aerospace engineering; atmospheric, oceanic and space sciences; biomedical engineering; chemical engineering; civil and environmental engineering; electrical engineering and computer science; industrial and operations engineering; materials science and engineering; mechanical engineering; naval architecture and marine engineering; and nuclear engineering and radiological sciences. Each year the college enrolls over 7,000 undergraduate and graduate students and grants about 1,200 undergraduate degrees and 800 masters and doctoral degrees. To learn more, please visit our Web site at www.engin.umich.edu.

Byron Roberts | EurekAlert!
Further information:
http://www.engin.umich.edu

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>