Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Univ. of Mich. researchers reduce interference from microwave ovens

04.12.2003


Researchers at the University of Michigan College of Engineering have developed an elegantly simple technique that dramatically reduces the interference microwave ovens create in telephones and wireless computer networks.



Worldwide, there are hundreds of millions of microwave ovens in kitchens, offices and laboratories, each with a magnetron that creates communications problems ranging from an aggravating crackle during a friendly telephone call, to the disruption of 911 calls and the flow of data in wireless computer networks.

Although these effects are difficult to quantify, it’s safe to say they’re an annoyance, an economic drain and potentially life-threatening.


The basic difficulty is that microwave ovens operate at a frequency near 2.45 GHz – about the same frequency at which telephones and wireless computers operate. In the microwave oven there are two magnets, one at each end of the magnetron. In an amazingly simple discovery, University of Michigan College of Engineering Professor Ronald Gilgenbach and a research team composed of Professor Y.Y. Lau and graduate student, Bogdan Neculaes, all from the department of Nuclear Engineering and Radiological Sciences, found that when they added four permanent magnets to the outside of one of the standard magnets, they could disrupt the magnetic field in such a way that it becomes benign to nearby electrical devices, yet doesn’t significantly affect the performance of the microwave oven.

The discovery could also have an enormous impact on the signal-to-noise ratio in radar and in the development of a power source for inexpensive deep-space exploration, and advanced electroporation for highly improved cancer treatment.


ABOUT THE UNIVERSITY OF MICHIGAN COLLEGE OF ENGINEERING
Celebrating its 150th anniversary this year, the University of Michigan College of Engineering is consistently ranked among the top engineering schools in the world. The College is composed of 11 academic departments: aerospace engineering; atmospheric, oceanic and space sciences; biomedical engineering; chemical engineering; civil and environmental engineering; electrical engineering and computer science; industrial and operations engineering; materials science and engineering; mechanical engineering; naval architecture and marine engineering; and nuclear engineering and radiological sciences. Each year the college enrolls over 7,000 undergraduate and graduate students and grants about 1,200 undergraduate degrees and 800 masters and doctoral degrees. To learn more, please visit our Web site at www.engin.umich.edu.

Byron Roberts | EurekAlert!
Further information:
http://www.engin.umich.edu

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>