Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New production-ready magnesium sheet

27.11.2003


Australia’s breakthrough low-cost, thin magnesium sheet technology will be made fully production-ready during the next twelve months.



This follows the successful development by CSIRO (Commonwealth Scientific & Industrial Research Organisation) of an industrial-scale pilot plant now producing near-net-shape, or close to production thickness, low-cost magnesium sheet.

Ms Vicki Tutungi, the Head of Commercial Development at CSIRO Manufacturing & Infrastructure Technology, says, "We are aiming at an in-production technology transfer for uptake by a suitable Australian or international commercial partner".


"During proving, CSIRO is continuing discussions with a number of parties interested in the uptake of its technology."

CSIRO has now completed successful installation of a new coil line for its magnesium sheet plant, and the first coils of magnesium sheet of 60 kg each have been supplied to one of the leading manufacturers of magnesium forming products in Japan for rolling and forming trials.

"Our proving plan includes a budget of $3m, including capital acquisition and appointment of an operations manager", says Ms Tutungi.

"We are now pleased to announce the appointment of Mr Peter Kean (BAppSci) to the position."

Ms Tutungi says, "Mr Kean brings to the project extensive experience in light metal casting R&D, from research through to commercialisation of a novel casting process".

"His previous experience, including managing a metal fabrication facility, and his metallurgical qualifications, combine to make him well suited to the role.

"Mr Kean will be responsible for proving the production capability of the CSIRO Magnesium Sheet Process.

"The existing project staff will all be employed to provide production expertise and supporting R&D.

"Our strategy means potential partners will be able to tap into an immediate revenue stream as part of a CSIRO package designed to break down the barriers to the uptake of this exciting new technology", says Ms Tutungi.

"The initial enquiries CSIRO has received so far make us confident that the market is ready and waiting for commercial quantities of low-cost, thin magnesium sheet."

The twelve-month production preparation and technology prove out will take place at CSIRO’s facilities at Clayton in Melbourne, Australia.

Background Break-out Piece

Magnesium sheet is used to produce a new generation of stronger, lightweight motorcars, DVDs, printers, cameras, computers and many other consumer goods.

Previously, its commercial uptake has been hindered by the high cost and availability of magnesium sheet.

The CSIRO Twin Roll Caster aims to produce as-cast magnesium sheet in commercial quantities using patented CSIRO systems specifically developed for handling molten magnesium.

CSIRO has been developing technology to cast magnesium alloy sheet since 2000.

An exhaustive proving program has demonstrated its technology is reliable, low-cost, efficient and potentially suitable for both continuous (large) and batch (small and medium ) production, and for producing good quality magnesium alloy sheet from a large range of conventional and new magnesium alloys.

Commercial quality sheet samples from 2.3-5 mm thick have been successfully cast in standard alloys (AZ31, AZ61 AM60 and AZ91), along with new magnesium wrought alloys.

These samples have already been rolled down to 0.5-0.6 mm gauges, using a unique finish-rolling schedule developed by CSIRO specifically for cast magnesium alloy sheet.

More information:

Brad Cowley, Industry Manager, CSIRO Elaborately Transformed Metals, Email: Brad.Cowley@csiro.au

Ken Anderson, Manager Marketing Communication, CSIRO Manufacturing & Infrastructure Technology, Email: Ken.Anderson@csiro.au, 61 3 9545 2052

Ken Anderson | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&docid=Magnesiumsheetupdate&style=mediaRelease

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>