Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microneedles: Report describes progress in new technology for painless drug delivery

18.11.2003


New fabrication results



The paper describes research at the Georgia Institute of Technology on fabricating hollow and solid microneedles in a variety of sizes and shapes from metals, biodegradable polymers, silicon and glass. It also reports on testing with cadaver skin and animals that demonstrates the ability of the micron-scale needles to deliver proteins, nanoparticles, and both small and large molecules through the skin.

"We’ve opened up the potential use of microneedles for delivering a broad range of therapeutics," said Mark Prausnitz, a professor in Georgia Tech’s School of Chemical and Biomolecular Engineering and principal investigator for the project. "Fabricating both hollow and solid microneedles in a variety of shapes, sizes and materials allows us to deliver large molecules with significant therapeutic interest such as insulin, proteins produced by the biotechnology industry, and nanoparticles that could encapsulate a drug or demonstrate the ability to deliver a virus for vaccinations."


Georgia Tech’s development of microneedles began in the late 1990s with microfabrication of solid needles made from silicon, using microlithography and etching technologies originally developed for the microelectronics industry. The researchers produced arrays of up to 400 needles designed to punch holes in the outer layer of skin to increase its permeability to small molecules applied with patches.

That work has broadened to include both solid and hollow microneedles in a broad range of shapes with feature sizes from one to 1,000 microns. Prausnitz and his research team have fabricated microneedle arrays from metal and polymer materials that have sufficient strength to reliably penetrate the skin without breakage.

Moving beyond the original – and complex – microelectronics-based fabrication techniques, the researchers have developed multiple manufacturing processes suitable for the mass production of microneedles from inexpensive metal and polymer materials. By making molds of their silicon needles, for instance, the research team has produced arrays of identical metal or polymer microneedles using a modified form of injection molding that can readily be adapted to industrial mass production.

Molds were also made without the need for creating silicon needles to use as masters. Metal microneedles were produced through electrodeposition onto laser-drilled polymer molds, while glass microneedle masters were fabricated using conventional drawn-glass micropipette techniques.

The broad range of sizes, shapes and materials will permit production of microneedle arrays customized for the type and volume of drug to be delivered, the time period of use, and most importantly, minimizing pain.

"There are trade offs between getting needles to go into the skin easily, getting drugs to deliver easily and making needles that don’t hurt," Prausnitz said. "Not every application will need a different needle, but there will probably be classes of applications that will benefit from different needle designs."

Among the potential applications are:
  • Arrays of hollow needles could be used to continuously carry drugs into the body using simple diffusion or a pump system;

  • Hollow microneedles could be used to remove fluid from the body for analysis – such as blood glucose measurements – and to then supply microliter volumes of insulin or other drug as required;

  • Microneedles may prove useful for immunization programs in developing countries or for the mass vaccination or administration of antidotes in bioterrorism incidents because they could be applied by persons with minimal medical training, and

  • Very small microneedles could provide highly targeted drug administration to individual cells.

Microneedles are expected to be less painful than conventional hypodermic needles because they are too small to significantly stimulate nerve endings, Prausnitz said. Small-scale studies so far have confirmed that expectation, and additional pain studies are planned. The safety and effectiveness of microneedles must still be proven in humans before they can receive Food & Drug Administration approval for clinical use.

Before microneedles find widespread use, the researchers must perfect the techniques for optimally inserting them into the skin, and complete the integration of microneedles into a full drug delivery system. The need to minimize variability in needle insertion is being addressed in part by development of an applicator device that would be part of the delivery system.

Several companies are pursuing development of microneedles, including some that are conducting clinical trials.

"There is an aggressive movement toward bringing microneedles to the market," Prausnitz said. "We’ve shown that microneedles can serve as a hybrid drug delivery system, combining the advantages of conventional needles – which deliver drugs easily – with transdermal patches that are more patient-friendly. I expect that within the next five years, a microneedle device will become available for clinical use."


Beyond Prausnitz, the research team includes Devin McAllister, Ping Wang, Shawn Davis, Jung-Hwan Park, Paul Canatella and Mark Allen. The research has been sponsored by the National Institutes of Health (NIH), the National Science Foundation (NSF), the American Diabetes Association and the Defense Advanced Research Projects Agency (DARPA).

John Toon | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>