Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microneedles: Report describes progress in new technology for painless drug delivery

18.11.2003


New fabrication results



The paper describes research at the Georgia Institute of Technology on fabricating hollow and solid microneedles in a variety of sizes and shapes from metals, biodegradable polymers, silicon and glass. It also reports on testing with cadaver skin and animals that demonstrates the ability of the micron-scale needles to deliver proteins, nanoparticles, and both small and large molecules through the skin.

"We’ve opened up the potential use of microneedles for delivering a broad range of therapeutics," said Mark Prausnitz, a professor in Georgia Tech’s School of Chemical and Biomolecular Engineering and principal investigator for the project. "Fabricating both hollow and solid microneedles in a variety of shapes, sizes and materials allows us to deliver large molecules with significant therapeutic interest such as insulin, proteins produced by the biotechnology industry, and nanoparticles that could encapsulate a drug or demonstrate the ability to deliver a virus for vaccinations."


Georgia Tech’s development of microneedles began in the late 1990s with microfabrication of solid needles made from silicon, using microlithography and etching technologies originally developed for the microelectronics industry. The researchers produced arrays of up to 400 needles designed to punch holes in the outer layer of skin to increase its permeability to small molecules applied with patches.

That work has broadened to include both solid and hollow microneedles in a broad range of shapes with feature sizes from one to 1,000 microns. Prausnitz and his research team have fabricated microneedle arrays from metal and polymer materials that have sufficient strength to reliably penetrate the skin without breakage.

Moving beyond the original – and complex – microelectronics-based fabrication techniques, the researchers have developed multiple manufacturing processes suitable for the mass production of microneedles from inexpensive metal and polymer materials. By making molds of their silicon needles, for instance, the research team has produced arrays of identical metal or polymer microneedles using a modified form of injection molding that can readily be adapted to industrial mass production.

Molds were also made without the need for creating silicon needles to use as masters. Metal microneedles were produced through electrodeposition onto laser-drilled polymer molds, while glass microneedle masters were fabricated using conventional drawn-glass micropipette techniques.

The broad range of sizes, shapes and materials will permit production of microneedle arrays customized for the type and volume of drug to be delivered, the time period of use, and most importantly, minimizing pain.

"There are trade offs between getting needles to go into the skin easily, getting drugs to deliver easily and making needles that don’t hurt," Prausnitz said. "Not every application will need a different needle, but there will probably be classes of applications that will benefit from different needle designs."

Among the potential applications are:
  • Arrays of hollow needles could be used to continuously carry drugs into the body using simple diffusion or a pump system;

  • Hollow microneedles could be used to remove fluid from the body for analysis – such as blood glucose measurements – and to then supply microliter volumes of insulin or other drug as required;

  • Microneedles may prove useful for immunization programs in developing countries or for the mass vaccination or administration of antidotes in bioterrorism incidents because they could be applied by persons with minimal medical training, and

  • Very small microneedles could provide highly targeted drug administration to individual cells.

Microneedles are expected to be less painful than conventional hypodermic needles because they are too small to significantly stimulate nerve endings, Prausnitz said. Small-scale studies so far have confirmed that expectation, and additional pain studies are planned. The safety and effectiveness of microneedles must still be proven in humans before they can receive Food & Drug Administration approval for clinical use.

Before microneedles find widespread use, the researchers must perfect the techniques for optimally inserting them into the skin, and complete the integration of microneedles into a full drug delivery system. The need to minimize variability in needle insertion is being addressed in part by development of an applicator device that would be part of the delivery system.

Several companies are pursuing development of microneedles, including some that are conducting clinical trials.

"There is an aggressive movement toward bringing microneedles to the market," Prausnitz said. "We’ve shown that microneedles can serve as a hybrid drug delivery system, combining the advantages of conventional needles – which deliver drugs easily – with transdermal patches that are more patient-friendly. I expect that within the next five years, a microneedle device will become available for clinical use."


Beyond Prausnitz, the research team includes Devin McAllister, Ping Wang, Shawn Davis, Jung-Hwan Park, Paul Canatella and Mark Allen. The research has been sponsored by the National Institutes of Health (NIH), the National Science Foundation (NSF), the American Diabetes Association and the Defense Advanced Research Projects Agency (DARPA).

John Toon | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>