Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA’s first step towards Mars Sample Return

12.11.2003


What is the next best thing to humans landing on Mars and exploring the wonders of the Red Planet? The answer: touching, imaging and analysing carefully preserved samples of Martian rock in a state-of-the-art laboratory on Earth.



If all goes according to plan, this is exactly what ESA’s long-term Aurora programme of Solar System exploration will achieve a decade from now, when the first samples of Mars material will be sealed in a special capsule and returned to Earth for analysis.
The first step towards making this great leap in human knowledge a reality was taken at the end of October with the announcement of the winners of competitive contracts for the Mars Sample Return (MSR) mission, the second Flagship robotic mission to be proposed as part of Aurora.

The parallel contracts for the Phase A studies that will carry out a full mission design iteration for the MSR have been placed with two industrial teams.



One team, headed by Alenia Spazio (Italy), also includes Alcatel (France), Dutch Space (Netherlands), ELV (Italy) and MDR (Canada).

The other team, headed by EADS Astrium (UK), also includes Astrium SAS (France), EADS ST (France), Galileo Avionica (Italy), RAL (UK), SAS (Belgium), SENER (Spain) and Utopia Consultancies (Germany).

“The industrial proposals received were of outstanding quality, reflecting the enthusiasm and the commitment of the industrial teams who prepared them,” said Bruno Gardini, Aurora Project Manager.

Bringing Mars back to Earth

As currently envisaged, the MSR will be a two-stage endeavour. First, a spacecraft that includes a return capsule will be launched in 2011 and inserted into orbit around Mars. Two years later, a second spacecraft carrying a Descent Module and a Mars Ascent Vehicle (MAV) will be launched on a similar trajectory.

During its final approach to Mars, the Descent Module/MAV will be released and make a controlled landing on the pristine planet. A robotic drill will then collect a soil sample from a depth of 11⁄2 to 2 metres and seal it inside a small canister on the ascent vehicle. Other samples of Martian soil and air may also be gathered and stored inside the canister.

Carrying its precious samples, the MAV will lift off from the surface, then rendezvous and dock with the spacecraft in Martian orbit. After receiving the canister loaded with Martian rocks, the spacecraft will return to Earth with the re-entry capsule containing the samples and send it plummeting into the atmosphere.

Slowed by a parachute or inflatable device, the capsule will make a fairly gentle touchdown before recovery teams retrieve the container from the landing site and deliver it to a planetary protection facility where the samples will be removed to await analysis by eager scientists.

The design of the capsule will ensure that the structural integrity of the sample container remains intact, even if the parachute fails to open and a crash landing occurs.

“The Mars Sample Return mission is one of the most challenging missions ever considered by ESA,” said Gardini.

“Not only does it include many new technologies and four or five different spacecraft, but it is also a mission of tremendous scientific importance and the first robotic mission with a similar profile to a possible human expedition to Mars.”

A number of the critical technologies required for the success of this ambitious endeavour have yet to be developed in Europe, e.g. re-entry of spacecraft arriving from at high velocity from deep space.

As a preliminary stage in developing a vehicle capable of bringing back samples from Mars, it was considered necessary to develop this re-entry capability and to demonstrate its maturity as part of the Aurora programme. Feasibility studies for a dedicated Arrow mission, known as the Earth re-entry Vehicle Demonstrator (EVD), were recently announced.

In the same way, testing of the complex rendezvous and docking techniques will be carried out as an experiment on the ExoMars mission, the first Flagship mission of the Aurora programme. The Phase A industrial study contracts for the ExoMars mission began in September.

Bruno Gardini | ESA
Further information:
http://www.esa.int/export/SPECIALS/Aurora/SEMQH0XLDMD_0.html

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>