Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA’s first step towards Mars Sample Return

12.11.2003


What is the next best thing to humans landing on Mars and exploring the wonders of the Red Planet? The answer: touching, imaging and analysing carefully preserved samples of Martian rock in a state-of-the-art laboratory on Earth.



If all goes according to plan, this is exactly what ESA’s long-term Aurora programme of Solar System exploration will achieve a decade from now, when the first samples of Mars material will be sealed in a special capsule and returned to Earth for analysis.
The first step towards making this great leap in human knowledge a reality was taken at the end of October with the announcement of the winners of competitive contracts for the Mars Sample Return (MSR) mission, the second Flagship robotic mission to be proposed as part of Aurora.

The parallel contracts for the Phase A studies that will carry out a full mission design iteration for the MSR have been placed with two industrial teams.



One team, headed by Alenia Spazio (Italy), also includes Alcatel (France), Dutch Space (Netherlands), ELV (Italy) and MDR (Canada).

The other team, headed by EADS Astrium (UK), also includes Astrium SAS (France), EADS ST (France), Galileo Avionica (Italy), RAL (UK), SAS (Belgium), SENER (Spain) and Utopia Consultancies (Germany).

“The industrial proposals received were of outstanding quality, reflecting the enthusiasm and the commitment of the industrial teams who prepared them,” said Bruno Gardini, Aurora Project Manager.

Bringing Mars back to Earth

As currently envisaged, the MSR will be a two-stage endeavour. First, a spacecraft that includes a return capsule will be launched in 2011 and inserted into orbit around Mars. Two years later, a second spacecraft carrying a Descent Module and a Mars Ascent Vehicle (MAV) will be launched on a similar trajectory.

During its final approach to Mars, the Descent Module/MAV will be released and make a controlled landing on the pristine planet. A robotic drill will then collect a soil sample from a depth of 11⁄2 to 2 metres and seal it inside a small canister on the ascent vehicle. Other samples of Martian soil and air may also be gathered and stored inside the canister.

Carrying its precious samples, the MAV will lift off from the surface, then rendezvous and dock with the spacecraft in Martian orbit. After receiving the canister loaded with Martian rocks, the spacecraft will return to Earth with the re-entry capsule containing the samples and send it plummeting into the atmosphere.

Slowed by a parachute or inflatable device, the capsule will make a fairly gentle touchdown before recovery teams retrieve the container from the landing site and deliver it to a planetary protection facility where the samples will be removed to await analysis by eager scientists.

The design of the capsule will ensure that the structural integrity of the sample container remains intact, even if the parachute fails to open and a crash landing occurs.

“The Mars Sample Return mission is one of the most challenging missions ever considered by ESA,” said Gardini.

“Not only does it include many new technologies and four or five different spacecraft, but it is also a mission of tremendous scientific importance and the first robotic mission with a similar profile to a possible human expedition to Mars.”

A number of the critical technologies required for the success of this ambitious endeavour have yet to be developed in Europe, e.g. re-entry of spacecraft arriving from at high velocity from deep space.

As a preliminary stage in developing a vehicle capable of bringing back samples from Mars, it was considered necessary to develop this re-entry capability and to demonstrate its maturity as part of the Aurora programme. Feasibility studies for a dedicated Arrow mission, known as the Earth re-entry Vehicle Demonstrator (EVD), were recently announced.

In the same way, testing of the complex rendezvous and docking techniques will be carried out as an experiment on the ExoMars mission, the first Flagship mission of the Aurora programme. The Phase A industrial study contracts for the ExoMars mission began in September.

Bruno Gardini | ESA
Further information:
http://www.esa.int/export/SPECIALS/Aurora/SEMQH0XLDMD_0.html

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>