Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutron detector under development to monitor spacecraft radiation

12.11.2003


It’s no secret that radiation is a great danger to astronauts. Most of the research to date concerns the effects of galactic cosmic rays, but what happens to those particles when they pass into a spacecraft?



A device currently being tested will reveal what kind of neutron energy spectrum astronauts are exposed to from neutrons inside a spacecraft, alerting the occupants when dangerous levels occur.

“When spacecraft travel through a variety of primary high-energy cosmic rays, large vehicles absorb those rays and convert them into neutrons,” said Dr. Richard Maurer, a researcher on the National Space Biomedical Research Institute’s (NSBRI) technology development team. “The spacecraft’s thick structure, in a sense, multiplies the primary particles so that there are more neutrons trapped inside a craft than the original number of cosmic rays that created them.”


The project’s goal is to develop a device that is lightweight and portable that could be transferred from the transport craft to a habitation facility or wherever it is needed. Currently, there is no compact, portable, real-time neutron detector instrument available for use inside a spacecraft or on planetary surfaces.

“These types of measurements would be crucial for exploration missions outside Earth’s orbit where there is no protection from Earth’s magnetic field,” Maurer said.

Primary radiation particles, ranging from infrared photons to galactic cosmic rays, have been measured for years, but neutrons have not been measured adequately particularly at high energy. Instruments used to measure radiation often miss the secondary neutrons, which astronauts are also exposed to. Maurer said the estimates of the radiation that astronauts receive from neutrons account for about one-third of the actual total dose.

“Since neutrons do not carry any electrical charge, they are both harder to detect and can penetrate more deeply into a space traveler’s body producing an increased risk of cancer, DNA damage and central nervous system damage,” said Maurer, principal staff member at The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., and principal investigator on the project.

To make the measurements, the device converts some of the neutron’s energy into light or a charge by making it interact with a detector. This process does not capture every neutron or all the energy of the neutrons detected, so a response function must be established to calibrate the percentage of particles detected and their energies, which are determined by analyzing the amount of light output or charge in the detectors.

The device, consisting of several detector systems that measure both low- and high-energy neutrons, has been through ground-based testing and calibration using radioactive sources and accelerator facilities.

Besides ground-based and aircraft flight tests, Maurer’s real-time neutron spectrometer recently executed a successful scientific experiment on a balloon flight at an altitude of 85,000 feet. The small amount of atmosphere remaining at this altitude on Earth is similar to that on the surface of Mars, and the high energy neutron spectra should be the same. Approximately 750,000 neutrons were detected by two detector systems over a period of 22 hours, and the data are being analyzed.

“An interesting thing about neutrons is that they are not deterred by the typical heavy materials that shield astronauts from charged particles, but rather by things that contain hydrogen, like water,” Maurer said. “Future shielding against neutrons could include water, or possibly a room inside an outpost’s water supply.”

Damage from neutrons can also be a problem for nuclear workers exposed to neutrons, people living at high elevations, and pilots flying at high altitudes on long-haul schedules or on flights over the poles, where the Earth’s magnetic field is weak and cosmic rays can readily penetrate.

“When traveling outside of the Earth’s atmosphere and its magnetic field, radiation doses to humans increase,” Maurer explained. “Recent measurements from the Mars Odyssey mission show that the total radiation dose is about three times that on the more protected International Space Station.”



The NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s research and education projects take place at more than 70 institutions across the United States.

Liesl Owens | NSBRI

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>