Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanic Ash Detector to safeguard air travel

10.11.2003


Air safety will be boosted and the world aviation industry is set to save millions of dollars with the development by Australian company Tenix and CSIRO of an airborne volcanic gas and ash detector.




Costs in excess of $250 million have been borne by airlines worldwide as a result of undetected volcanic ash in flightpaths. Silicate particles in the ash can enter the engines and melt, leading to serious engine damage.

Volcanic ash also causes windscreen scouring, instrument damage and even complete loss of power on jet airliners.


The CSIRO-developed Ground-based Infra-Red Detection (G-bIRD) system is a major initiative for aviation safety, designed for installation in areas where hazardous volcanic gas and ash clouds may be present, including the heavily-travelled routes across the North and South Pacific.

Tenix successfully trialled the device in Hawaii and Guam earlier this year, and at the base of Mt Etna in Sicily last month. The trials are part of Tenix’s work with commercial and government partners to make G-bIRD available at cities and airports near volcanoes, to provide early warning and data about the nature and location of ash and sulphur dioxide clouds.

Tenix Group Managing Director Paul Salteri said today that an average of at least one volcano erupted somewhere around the world each week, causing regular hazard to airline traffic.

"G-bIRD has the potential to become an integral part of air transport safety systems and further reduce the risks of air travel," Mr Salteri said.

The technology was developed in Australia in the 1990s by CSIRO Atmospheric Research scientists headed by Dr Fred Prata. Tenix joined the multimillion-dollar development 12 months ago and is responsible for the detector’s commercialisation.

The technology may also be used for environmental monitoring of sulphur dioxide and sulphuric acid (acid rain) clouds to assist people suffering from asthma and other respiratory diseases.

Dr Prata from CSIRO Atmospheric Research said researchers were excited about many other new applications of this technology, from geophysics to atmospheric modelling.

"CSIRO is really excited to be working with Tenix to deliver this Australian innovation for new global markets with the impact of enhancing safety and reducing costs to the airline industry. The G-bIRD project has built on the strengths of both organisations to develop something of tremendous value to the world aviation industry," Dr Prata said.

Tenix’s work on G-bIRD is part of its A$40m Take to Market Investment fund, involving projects requiring a mix of capital and commercial input.

More information from:

Fred Prata, CSIRO Atmospheric Research, 03 9239 4681, mobile: 0401 716 201

Liam Bathgate, Tenix, mobile: 0417 268 210

Fred Prata is available for TV interviews at 10:30 at CSIRO Atmospheric Research 107-121 Station Street, Aspendale. (Cnr Robertson Parade/Station Street).

Media assistance, including high-resolution stills and broadcast quality video of the G-bIRD trials in Sicily and of volcanic eruptions in Guam:

Kate Breeze, Tenix , 02 9904 4333

or Simon Torok, CSIRO Atmospheric research, mobile: 0409 844 302

Nick Goldie | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=Prtenix

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>