Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanic Ash Detector to safeguard air travel

10.11.2003


Air safety will be boosted and the world aviation industry is set to save millions of dollars with the development by Australian company Tenix and CSIRO of an airborne volcanic gas and ash detector.




Costs in excess of $250 million have been borne by airlines worldwide as a result of undetected volcanic ash in flightpaths. Silicate particles in the ash can enter the engines and melt, leading to serious engine damage.

Volcanic ash also causes windscreen scouring, instrument damage and even complete loss of power on jet airliners.


The CSIRO-developed Ground-based Infra-Red Detection (G-bIRD) system is a major initiative for aviation safety, designed for installation in areas where hazardous volcanic gas and ash clouds may be present, including the heavily-travelled routes across the North and South Pacific.

Tenix successfully trialled the device in Hawaii and Guam earlier this year, and at the base of Mt Etna in Sicily last month. The trials are part of Tenix’s work with commercial and government partners to make G-bIRD available at cities and airports near volcanoes, to provide early warning and data about the nature and location of ash and sulphur dioxide clouds.

Tenix Group Managing Director Paul Salteri said today that an average of at least one volcano erupted somewhere around the world each week, causing regular hazard to airline traffic.

"G-bIRD has the potential to become an integral part of air transport safety systems and further reduce the risks of air travel," Mr Salteri said.

The technology was developed in Australia in the 1990s by CSIRO Atmospheric Research scientists headed by Dr Fred Prata. Tenix joined the multimillion-dollar development 12 months ago and is responsible for the detector’s commercialisation.

The technology may also be used for environmental monitoring of sulphur dioxide and sulphuric acid (acid rain) clouds to assist people suffering from asthma and other respiratory diseases.

Dr Prata from CSIRO Atmospheric Research said researchers were excited about many other new applications of this technology, from geophysics to atmospheric modelling.

"CSIRO is really excited to be working with Tenix to deliver this Australian innovation for new global markets with the impact of enhancing safety and reducing costs to the airline industry. The G-bIRD project has built on the strengths of both organisations to develop something of tremendous value to the world aviation industry," Dr Prata said.

Tenix’s work on G-bIRD is part of its A$40m Take to Market Investment fund, involving projects requiring a mix of capital and commercial input.

More information from:

Fred Prata, CSIRO Atmospheric Research, 03 9239 4681, mobile: 0401 716 201

Liam Bathgate, Tenix, mobile: 0417 268 210

Fred Prata is available for TV interviews at 10:30 at CSIRO Atmospheric Research 107-121 Station Street, Aspendale. (Cnr Robertson Parade/Station Street).

Media assistance, including high-resolution stills and broadcast quality video of the G-bIRD trials in Sicily and of volcanic eruptions in Guam:

Kate Breeze, Tenix , 02 9904 4333

or Simon Torok, CSIRO Atmospheric research, mobile: 0409 844 302

Nick Goldie | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=Prtenix

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>