Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coating detachment finally understood

21.10.2003


In Friday’s edition of Applied Physics, TU Delft researchers will publish an article on how coatings are made and why they so often let go. “Finally, after 30 years, we know exactly what happens,” says Dr. Guido Janssen, materials expert at TU Delft and first author of the article to be printed in the prestigious American journal. Together with his colleagues at the Netherlands Institute for Metals Research (NIMR), he has brought the coating of very small components one step closer.



Taps, valves in a diesel motor or electrical components, many objects are coated. These thin layers can provide a certain visual enhancements, such as a reflective surface. They can also protect the coated material from being damaged. Janssen: “The problem is that in some cases, these coatings start to detach from the base material. The tap becomes ugly and the diesel valve is damaged, causing the engine to run less efficiently.”

The delamination of coatings is caused by tension forces within in the coatings. The atoms in the coating exert ‘pulling’ forces on one another, thereby finally pulling each other off the base material. Janssen: “This is a large problem within the mechatronics (mechanics combined with electronics) field, where the thickness of the coating often accounts for 10% of the total material thickness. The same tension is responsible for causing electronic chips to warp, and is it one of the that make it difficult to continuously develop more complex chips.”


Currently, the tension is combated by bombarding the coating with ions. The ions force the metal atoms aside slightly, exerting a pressure force that works against the tension force. The latest research done by Janssen and his colleagues shows that, contrary what has always been thought, the tension in the these coatings is not homogeneous. The tension at the top of the coating is higher than that at the bottom. Janssen: “ Now, after 30 years, we can see that ion bombardment does have an effect, but that one should use a large dose at the beginning and much smaller doses later on. This is just the opposite of current practice.” According to the Delft researchers, it may now be possible to apply a coating to, for example, very small switches for use in mechatronic systems, with out causing the switch to warp. Janssen: “ A real step forward.”

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>