Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Coating detachment finally understood


In Friday’s edition of Applied Physics, TU Delft researchers will publish an article on how coatings are made and why they so often let go. “Finally, after 30 years, we know exactly what happens,” says Dr. Guido Janssen, materials expert at TU Delft and first author of the article to be printed in the prestigious American journal. Together with his colleagues at the Netherlands Institute for Metals Research (NIMR), he has brought the coating of very small components one step closer.

Taps, valves in a diesel motor or electrical components, many objects are coated. These thin layers can provide a certain visual enhancements, such as a reflective surface. They can also protect the coated material from being damaged. Janssen: “The problem is that in some cases, these coatings start to detach from the base material. The tap becomes ugly and the diesel valve is damaged, causing the engine to run less efficiently.”

The delamination of coatings is caused by tension forces within in the coatings. The atoms in the coating exert ‘pulling’ forces on one another, thereby finally pulling each other off the base material. Janssen: “This is a large problem within the mechatronics (mechanics combined with electronics) field, where the thickness of the coating often accounts for 10% of the total material thickness. The same tension is responsible for causing electronic chips to warp, and is it one of the that make it difficult to continuously develop more complex chips.”

Currently, the tension is combated by bombarding the coating with ions. The ions force the metal atoms aside slightly, exerting a pressure force that works against the tension force. The latest research done by Janssen and his colleagues shows that, contrary what has always been thought, the tension in the these coatings is not homogeneous. The tension at the top of the coating is higher than that at the bottom. Janssen: “ Now, after 30 years, we can see that ion bombardment does have an effect, but that one should use a large dose at the beginning and much smaller doses later on. This is just the opposite of current practice.” According to the Delft researchers, it may now be possible to apply a coating to, for example, very small switches for use in mechatronic systems, with out causing the switch to warp. Janssen: “ A real step forward.”

Maarten van der Sanden | alfa
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>