Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coating detachment finally understood

21.10.2003


In Friday’s edition of Applied Physics, TU Delft researchers will publish an article on how coatings are made and why they so often let go. “Finally, after 30 years, we know exactly what happens,” says Dr. Guido Janssen, materials expert at TU Delft and first author of the article to be printed in the prestigious American journal. Together with his colleagues at the Netherlands Institute for Metals Research (NIMR), he has brought the coating of very small components one step closer.



Taps, valves in a diesel motor or electrical components, many objects are coated. These thin layers can provide a certain visual enhancements, such as a reflective surface. They can also protect the coated material from being damaged. Janssen: “The problem is that in some cases, these coatings start to detach from the base material. The tap becomes ugly and the diesel valve is damaged, causing the engine to run less efficiently.”

The delamination of coatings is caused by tension forces within in the coatings. The atoms in the coating exert ‘pulling’ forces on one another, thereby finally pulling each other off the base material. Janssen: “This is a large problem within the mechatronics (mechanics combined with electronics) field, where the thickness of the coating often accounts for 10% of the total material thickness. The same tension is responsible for causing electronic chips to warp, and is it one of the that make it difficult to continuously develop more complex chips.”


Currently, the tension is combated by bombarding the coating with ions. The ions force the metal atoms aside slightly, exerting a pressure force that works against the tension force. The latest research done by Janssen and his colleagues shows that, contrary what has always been thought, the tension in the these coatings is not homogeneous. The tension at the top of the coating is higher than that at the bottom. Janssen: “ Now, after 30 years, we can see that ion bombardment does have an effect, but that one should use a large dose at the beginning and much smaller doses later on. This is just the opposite of current practice.” According to the Delft researchers, it may now be possible to apply a coating to, for example, very small switches for use in mechatronic systems, with out causing the switch to warp. Janssen: “ A real step forward.”

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>