Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New scheduling method raises efficiency of electronics recycling

15.10.2003


An industrial engineer at Purdue University has created a method to increase the efficiency, profitability and capacity of recycling operations for electronic products such as computers and television sets.



The work also promises to open up a new area of research in a field known as scheduling.

More than 1.5 billion pounds of electronic equipment is processed every year in the United States, and the quantity of discarded personal computers is expected to rise substantially over the coming decade.


While these products contain valuable materials, including copper, aluminum and steel, they also harbor hazardous substances such as lead.

Although certain recycling centers specialize in electronic products, there is no software designed for the efficient scheduling of jobs within electronics recycling plants. Such scheduling methods are commonly used to improve production in manufacturing plants, but the goals are different for recycling applications, said Julie Ann Stuart, an assistant professor of industrial engineering at Purdue.

She has developed a method for improving the efficiency of electronics recycling by better managing the flow of incoming products from storage to disassembly.

"In recycling you have a different objective when you schedule jobs than you do in manufacturing, and you need different key measurements to achieve that objective," Stuart said. "We created the key measurements, and we identified the new objective, which may open up an area of research for a whole new class of scheduling problems."

Findings about the new approach are detailed in a paper appearing this month in the IEEE Transactions on Electronics Packaging Manufacturing, published by the Institute of Electrical and Electronics Engineers.

Scheduling is a field in which researchers develop methods to improve efficiency by carefully timing the sequence of tasks in an operation, such as a manufacturing process, in which a critical objective is to complete a product on time. Manufacturers are expected to meet "due dates," or deadlines for the delivery of products.

The priorities, however, are different in recycling; there is no due date, and it often doesn’t matter how fast the final "products," raw materials such as copper and steel, are extracted from obsolete machines, Stuart said.

Far more important to the electronics recycler is keeping plenty of space continually available in an area of the plant where products are received and briefly stored immediately before they are recycled.

Electronics recyclers earn a portion of their income just for receiving shipments. Because the arrival of shipments is unpredictable, it is important to always have enough storage space available. If the receiving area – or staging space – is full, incoming shipments have to be turned away or stored in trailers, causing a loss of income or incurring trailer rental fees, Stuart said.

"The recycler wants to empty the staging space as fast as possible to receive more materials," she said. "That’s important because they may receive three truckloads this week, one the following week, two the next week and so on."

Recyclers currently try to keep their staging areas as open as possible by first moving the products that can most quickly be taken apart. But that is not the best approach, according to the research findings.

In the new method, the largest products that can be quickly disassembled are the first to be moved out of the staging space. Stuart compared the size-based method with two other strategies, one in which the most valuable products are moved first out of the staging area and another in which the products that can be most quickly disassembled are moved first.

She found that only the size-based method improved the system significantly.

"Moving the larger objects with quick disassembly times first enables you to operate with a smaller staging area," said Stuart, who tested her method with models that simulate recycling operations. "We showed that using our scheduling policy could lower the required maximum staging volume by as much as half. If you are able to reduce the staging space from 30,000 square feet to 15,000 square feet, that represents a considerable savings in overhead."

With increased efficiency also would come greater capacity because the recycler would be able to process a greater number of products within the same space.

Stuart grouped products into families – such as computer monitors and central processing units, television sets, office and kitchen electronics – and she used the turnover rate of products in the staging space as a key measurement, or metric. To determine which objects to move first, she created a technique in which the average size of a product family is divided by the time it takes to begin processing that product.

"If you have large products that don’t take very long to start disassembling and you start with those first, you are going to free up that space faster," she said. "This is very easy to implement because you determine an average size for such a group and an average time, and then you update those averages perhaps once a year. You can then use the size-based estimates for a year to schedule products at the recycling center."

Improving plant efficiency could become an issue in the future, as state and federal policy-makers consider how to control waste from electronic products. Certain electronic components contain hazardous materials, including mercury, lead and cadmium, making it important to recycle discarded computers so they are not dumped in landfills. The number of personal computers, televisions and other consumer electronics expected to become obsolete this decade may approach 3 billion units, according to the International Association of Electronic Recyclers.

The more than 1.5 billion pounds of electronic junk processed annually includes about 40 million discarded computer components like printers, monitors and CPUs, according to a report issued earlier this year by the association.

The association report estimates that about 1 billion units of obsolete computer equipment will become potential scrap between now and 2010, and about 3 billion units of consumer electronics will be junked during that time, including 200 million television sets. The increasing flow of e-trash is expected to drive a fourfold growth of the U.S. electronics recycling industry, currently made up of about 400 companies with more than 7,000 employees.

Currently, recycling computers and television sets is not required in most places. But if new requirements are instituted in the future, recyclers will face a significant challenge trying to manage the surging flow of high-tech junk.

"If it ever becomes law to recycle electronics, it would be a good idea to use this scheduling approach so that less costly, smaller recycling centers may achieve the same objective as larger ones," Stuart said.

The research was funded by the National Science Foundation.

Stuart began the work with her student Vivi Christina while she was a faculty member at Ohio State University and completed the research at Purdue. The paper will appear in the April 2003 issue of the monthly publication, IEEE Transactions on Electronics Packaging Manufacturing, which will be available in this month.

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031013.Stuart.recycle.html
http://www.iaer.org/communications/indreport.htm

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>