Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT engineers report new approach to tissue engineering

14.10.2003


MIT engineers report a new approach to creating three-dimensional samples of human tissue that could push researchers closer to their ultimate goal: tissues for therapeutic applications and replacement organs. The technique could also help answer questions in cell and developmental biology.



The team "seeded" human embryonic stem cells, which have the potential to differentiate into a variety of specialized cells, onto a biodegradable polymer scaffold. By treating the scaffold/stem cell structure with chemical cues, or growth factors, known to stimulate the formation of specific cell types, the researchers coaxed the stem cells to form tissues with characteristics of developing human cartilage, liver, nerves and blood vessels.

"Here we show for the first time that polymer scaffolds … promoted proliferation, differentiation and organization of human embryonic stem cells into 3D structures," the researchers wrote in a paper to appear the week of Oct. 13 in the online edition of the Proceedings of the National Academy of Sciences.


Further, the resulting tissues continued to thrive when implanted in mice with suppressed immune systems (to eliminate rejection). They expressed human proteins, and integrated with the host’s blood-vessel networks.

"For me it was very exciting to see that these [stem] cells could move around and start to ’talk’ with one another, generating the different cell types common to a given tissue and organizing into that tissue," said Shulamit Levenberg, first author of the paper and a research associate in the Department of Chemical Engineering.

The technique could also have an impact on the study of cell and developmental biology. "When you give cells a three-dimensional structure [on which to grow], it’s really a lot more like what’s happening in the embryo," said Levenberg, a mother of four whose youngest child is seven months old.

Levenberg’s colleagues on the work are Robert Langer, the Germeshausen Professor of Chemical and Biomedical Engineering; MIT alumna Ngan Huang (S.B. 2002); Erin Lavik, a postdoctoral fellow in the MIT-Harvard Division of Health Sciences and Technology who is now a professor at Yale; Arlin Rogers of MIT’s Division of Comparative Medicine; and Joseph Itskovitz-Eldor of the Technion in Israel.

The work provides a new approach to prodding stem cells to grow into different tissues. Before, researchers created a variety of cell types from one batch of stem cells, then isolated the cell type of interest. The isolated cells were then grown on a given medium, such as a polymer scaffold. The same MIT team did just that last year with the endothelial cells that blood vessels are composed of.

This time around, the MIT researchers seeded stem cells directly into the scaffold. "We found that with different growth factors, we could push them in different directions," said Levenberg.

The polymer scaffold is key. "The scaffold provides physical cues for cell orientation and spreading, and pores provide space for remodeling of tissue structures," the researchers wrote.

The scaffold was carefully engineered. "If the scaffold is too soft," for example, "it collapses under the cells’ mechanical forces," said Levenberg. The team also used two different polymers to create the scaffold. "One degrades quickly, the other more slowly," she said. "That gives cells room to grow while still retaining a support structure for them."

The work was supported by the National Institutes of Health. The human embryonic stem cells are from an NIH-approved line.

Elizabeth A. Thomson | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>