Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lightweight, high resistance synthetic fibres to save historic buildings and monuments


Many of Europe’s historic buildings, monuments and civil engineering structures are gradually decaying. Already weakened by age, they are damaged by earth tremors, pollution and traffic vibration. And this is more than just a cultural problem. Continual maintenance is extremely costly and obtrusive, not least because of its negative impact upon tourism and traffic.

Conventional rehabilitation methods using wooden or steel buttresses, tie rods and scaffolding supports dominate the landscape and usually do not offer a long term, durable solution.

But EUREKA project COMREHAB has developed new techniques to strengthen masonry, wood and concrete buildings using carbon-fibre strips instead of steel bars. These will reinforce structures with less damage to the existing building.

Partners from Spain, the UK, Portugal and Slovenia worked together to create and test new advanced composites made of epoxy or polyester resin matrix.
The new high resistance synthetic fibres are applied in thin layers to strengthen and stiffen stress-critical areas.

The materials are lighter and less intrusive than an alternative like steel plate reinforcement, and have exceptional resistance to corrosion. They offer easier handling, adapt readily to shape irregularity and can be delivered to the site in rolls of 100m or more. Unlike traditional methods, the new approach is reversible. It is a less disruptive process, and can be implemented without the need for foundation reinforcement because the materials are so lightweight.

The application of this new technology at low temperatures will cut the cost of conventional reinforcement technologies by 15%. It can be applied on site using existing low-cost heating devices. The project team hope that this will open up a market to rehabilitate historic buildings and monuments throughout Europe worth in the region of 100 MEuro per annum.

Ebby Shahidi, Design and R&D Director of UK resins experts Advanced Composites Group Ltd, explains “the ability to cure at low temperature allows the production of reinforcement patches with a wide range of fibres that can be easily used for in-situ repair work.”

But more research is needed. Despite a total of 24 structural tests, the partners have experienced problems introducing a universal use of composites in the construction industry. “This difficulty is an educational one where engineers, architects and public administrators in the construction industry need to be shown the benefits of using these materials,” explains Juan Mieres, R&D Director of Spanish lead partner NECSO.

Mieres is anxious that further projects on the use of composites in the construction industry should be encouraged, in order to overcome existing problems such as creep, the ageing of resins, fire, and the difficulty of applying composites on site.

This was NECSO’s first European R&D project. “Working within the EUREKA framework has been an enriching experience, both from the technological and commercial points of view,” Mieres said. “It was an efficient way of introducing ourselves to working in the area of European technological research, which will lead to our involvement in future international R&D projects.”

Nicola Vatthauer | alfa
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>