Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cheaper and more environmentally friendly process for dyeing fabric

17.09.2003


Fabric has been dyed by the same wasteful method for over 100 years. This involves chemical agents being added to a dye bath and thrown away afterwards. A new process developed by EUREKA project E! 2625 EUROENVIRON ECDVAT (ElectroChemical Dyeing with Vat dyes) replaces environmentally damaging chemical reducing agents with electrons.

According to Prof. Dr. Thomas Bechtold of the University of Innsbruck’s Textiles Department, the new process can be more easily controlled. Using the conventional method, the amounts of chemicals and the bath temperature have to be calculated very carefully to get the dye level right. “With the new method, dyers can monitor the situation in the dye bath and can increase the electrochemical addition of chemicals to “steer” the process. Using electrons instead of chemicals means that the dye bath can be monitored and adjusted in real time,” explains Bechtold. “This is a big advantage and allows us to maintain the high quality of the dyed fabric,” he says.

The new process also has environmental benefits. Any chemicals released with ECDVAT are easily biodegradable and the partners are working towards greater water savings, expected to be as high as 85% of the volume used today in the dyeing process.



Dr. Wolfgang Schrott, Head of Technical Marketing at the German project partner, Dystar Textilfarben GmbH & Co. Deutschland KG, says that the project is a “big technical success,” but the equipment is still too expensive from a commercial point of view. “We need to concentrate on making the machinery cheaper,” he says.

“We expect savings in chemical costs and in fresh water and waste water treatment and to create better controlled processes with improved reliability, thus lowering the costs of unsatisfactory dyeings,” says Bechtold. “The development of cheaper and more efficient equipment on the basis of the results of ECDVAT will lower the costs further and make our high quality vat dyeing process even more attractive and competitive.”

Now the team’s strategy is to broaden the uses of the technology to bring down the cost and continue to make the process more profitable.

The partners expect other firms to become interested before too long as they are presenting their work at the “textile Olympics” – the four-yearly International Textile Machinery Association fair in Birmingham, UK, in October 2003.

“Being part of EUREKA helped in the formation of the group and brought extra funding,” explains Bechtold. “In Austria there is a special funding structure which increases financial support if a EUREKA project is formed.”

Nicola Vatthauer | alfa
Further information:
http://www.eureka.be/ecdvat

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>