Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combating corrosion could aid industrial safety

03.09.2003


A new technique to detect localised corrosion in steel and other metals could help industry avoid major repair bills. In some cases, it could even help prevent serious safety problems in industrial plants and other building structures.



This technique differs from traditional methods as it is able to detect corrosion on a much smaller level. This means that preventative action can be taken earlier, saving money, time and possibly lives.

Funded by the Swindon-based Engineering and Physical Sciences Research Council (EPSRC), materials researchers at Sheffield Hallam University are now using the UK-developed technique to solve real industrial problems.


Corrosion can affect the structural integrity and durability of metals and alloys used in pipework, tanks and elsewhere. Although overall metal loss may be insignificant (e.g. 5%), localised corrosion can still lead to pitting which can lead on to the cracking and eventual fracture that cause leakages or more serious failures. Historically, there has been a lack of techniques able to evaluate this type of metal loss as conventional detection methods assume that corrosion takes place uniformly.

Recently, novel scanning techniques have been developed which are capable of providing useful information on local corrosion. Use of these techniques is growing in central Europe, the Far East and North America. The aim of the Sheffield Hallam initiative was to develop the UK’s capability in this field through the use of the Scanning Vibrating Electrode Technique (SVET).

SVET involves scanning a vibrating electrode over the surface of a material immersed in the test solution, whilst measuring the local corrosion activity taking place at the metal-solution interface (a picture of the SVET set-up is available see details below). It differs from traditional methods because it measures this activity at a microscopic level, enabling both the rate and the distribution of localised corrosion damage to be measured. The use of a vibrating electrode also offers improved signal output and resolution over other ‘new-generation’ non-vibrating probe techniques. The project team has already used the SVET system to carry out a number of interdisciplinary initiatives, many involving collaboration with industry.

The team is led by Professor Bob Akid, Director of the University’s Centre for Corrosion Technology. Professor Akid says: “Detecting corrosion as early as possible is of vital importance to industry. By improving industry’s ability to predict the onset of damage, SVET will enable effective forecasting of maintenance regimes”.

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk/

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>