Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Combating corrosion could aid industrial safety


A new technique to detect localised corrosion in steel and other metals could help industry avoid major repair bills. In some cases, it could even help prevent serious safety problems in industrial plants and other building structures.

This technique differs from traditional methods as it is able to detect corrosion on a much smaller level. This means that preventative action can be taken earlier, saving money, time and possibly lives.

Funded by the Swindon-based Engineering and Physical Sciences Research Council (EPSRC), materials researchers at Sheffield Hallam University are now using the UK-developed technique to solve real industrial problems.

Corrosion can affect the structural integrity and durability of metals and alloys used in pipework, tanks and elsewhere. Although overall metal loss may be insignificant (e.g. 5%), localised corrosion can still lead to pitting which can lead on to the cracking and eventual fracture that cause leakages or more serious failures. Historically, there has been a lack of techniques able to evaluate this type of metal loss as conventional detection methods assume that corrosion takes place uniformly.

Recently, novel scanning techniques have been developed which are capable of providing useful information on local corrosion. Use of these techniques is growing in central Europe, the Far East and North America. The aim of the Sheffield Hallam initiative was to develop the UK’s capability in this field through the use of the Scanning Vibrating Electrode Technique (SVET).

SVET involves scanning a vibrating electrode over the surface of a material immersed in the test solution, whilst measuring the local corrosion activity taking place at the metal-solution interface (a picture of the SVET set-up is available see details below). It differs from traditional methods because it measures this activity at a microscopic level, enabling both the rate and the distribution of localised corrosion damage to be measured. The use of a vibrating electrode also offers improved signal output and resolution over other ‘new-generation’ non-vibrating probe techniques. The project team has already used the SVET system to carry out a number of interdisciplinary initiatives, many involving collaboration with industry.

The team is led by Professor Bob Akid, Director of the University’s Centre for Corrosion Technology. Professor Akid says: “Detecting corrosion as early as possible is of vital importance to industry. By improving industry’s ability to predict the onset of damage, SVET will enable effective forecasting of maintenance regimes”.

Jane Reck | alfa
Further information:

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>