Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combating corrosion could aid industrial safety

03.09.2003


A new technique to detect localised corrosion in steel and other metals could help industry avoid major repair bills. In some cases, it could even help prevent serious safety problems in industrial plants and other building structures.



This technique differs from traditional methods as it is able to detect corrosion on a much smaller level. This means that preventative action can be taken earlier, saving money, time and possibly lives.

Funded by the Swindon-based Engineering and Physical Sciences Research Council (EPSRC), materials researchers at Sheffield Hallam University are now using the UK-developed technique to solve real industrial problems.


Corrosion can affect the structural integrity and durability of metals and alloys used in pipework, tanks and elsewhere. Although overall metal loss may be insignificant (e.g. 5%), localised corrosion can still lead to pitting which can lead on to the cracking and eventual fracture that cause leakages or more serious failures. Historically, there has been a lack of techniques able to evaluate this type of metal loss as conventional detection methods assume that corrosion takes place uniformly.

Recently, novel scanning techniques have been developed which are capable of providing useful information on local corrosion. Use of these techniques is growing in central Europe, the Far East and North America. The aim of the Sheffield Hallam initiative was to develop the UK’s capability in this field through the use of the Scanning Vibrating Electrode Technique (SVET).

SVET involves scanning a vibrating electrode over the surface of a material immersed in the test solution, whilst measuring the local corrosion activity taking place at the metal-solution interface (a picture of the SVET set-up is available see details below). It differs from traditional methods because it measures this activity at a microscopic level, enabling both the rate and the distribution of localised corrosion damage to be measured. The use of a vibrating electrode also offers improved signal output and resolution over other ‘new-generation’ non-vibrating probe techniques. The project team has already used the SVET system to carry out a number of interdisciplinary initiatives, many involving collaboration with industry.

The team is led by Professor Bob Akid, Director of the University’s Centre for Corrosion Technology. Professor Akid says: “Detecting corrosion as early as possible is of vital importance to industry. By improving industry’s ability to predict the onset of damage, SVET will enable effective forecasting of maintenance regimes”.

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk/

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>