Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flying eyes to keep the power flowing

21.08.2003


Three-dimensional display of the trees, the powerpoles and powerlines


Major blackouts such as those that hit North America last week can result from combinations of relatively small problems, such as trees growing too close to powerlines, according to Kevin Cryan, Business Development Manager with CSIRO Mathematical and Information Sciences.

"There seem to have been a number of factors that led to the recent disastrous blackouts but it’s been reported that one incident involved an overheated powerline sagging and making contact with trees," says Mr Cryan.

The answer to reducing this threat could well lie in technology developed by CSIRO.



A pair of small cameras attached to the wings of an aeroplane form the basis of a unique system which actually measures the distances between powerlines and trees from the air.

The beauty of this technology is that hundreds of kilometres of powerlines can be inspected in a single flight, an operation that would take far longer by conventional means, Mr Cryan says.

Usually, powerlines are inspected by field teams that drive around and check clearances manually. When problems are found, maintenance crews can be sent to remedy the situation.

"As there are thousands of kilometres of powerlines stretching across the country, this is no small undertaking. Access to remote areas can be difficult and the associated costs are high," says Mr Cryan

Power companies in Australia and most other developed countries are required to maintain a clearance space around powerlines.

The CSIRO system combines stereo computer vision technology with a Geographic Information System (GIS) and special software that can process information to create three dimensional images.

"The planes fly over the powerlines, gathering visual data and the GIS determines the precise location at any moment. The software processes the image data into 3D, identifying powerlines, poles and nearby trees and then measures the distances between them," Mr Cryan says.

"Deploying this technology involves obvious costs but these need to be weighed against the consequences of catastrophic failures like the one last week."

Trees interfering with powerlines is not just a problem in terms of blackouts - it can also cause bushfires.

"This technology gives us is the ability to know that we have a problem before it causes a bushfire or a downed line or unhappy customers. It means a team can be sent directly to a potential problem area before the risks get too high," says Mr Cryan.

The technology is now at the stage where it is ready for commercialisation.

"It may well be that, rather than each power company wanting to monitor its own lines in this way, a more efficient business model would be for someone to provide this as a service to all companies," Mr Cryan says.


More information:
Kevin Cryan, CSIRO, 02 9325 3242, mobile: 0418 115 774
Email: kevin.cryan@csiro.au

Media Assistance:
Tom McGinness, CSIRO, 02 9325 3227, mobile: 0419 419 210
Email: tom.mcginness@csiro.au

Rosie Schmedding | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=PrGIS

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>