Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fabric design approaches the jet age

13.08.2003


New research into jet printing on textiles could lead to a faster, cheaper alternative to conventional ways of dyeing fabrics. Jet printing could also deliver valuable design benefits, such as a wider choice of colours and avoidance of the need to repeat patterns in a design.



The research is being carried out at Leeds University, with funding from the Swindon-based Engineering and Physical Sciences Research Council. Involving a number of industrial partners, the initiative is also bringing together textile experts, mechanical engineers, colour chemists, materials researchers and IT specialists for the first time in a single project in this field.

The textile industry currently prints fabrics using screen-printing technology. Although productive for long print runs, it is slow and expensive for today’s increasingly smaller order quantities. Jet printing offers many advantages, such as the ability to download designs straight from computer to material. It also has the potential to make short print runs economic and enable small quantities of fabrics to be made to order, thereby eliminating the need to keep stock. However, many technical barriers need to be overcome if jet printers are to be developed that are big enough, fast enough and reliable enough for commercial-scale use by the industry.


Dr Abbas Dehghani, one of the investigators at Leeds University, says: “Jet printing could revolutionise the world of design. It could extend the range and creativity of designs that are produced and substantially reduce the time it takes to bring them to market. Our project aims to bring the potential a step closer to reality”.

The present project is therefore addressing a wide range of relevant issues. For example, colour chemists are focusing on the key task of developing dyes that do not clog up a jet printer’s nozzles. Work is also being undertaken on the development of optical monitoring techniques able to inspect fabrics immediately before and after application of the dye, to help ensure that the right amount has been applied. Mechanical engineering researchers, meanwhile, are using computational fluid dynamics to model dyes and so help materials researchers develop piezo-ceramic print heads that apply them efficiently and neatly.

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>