Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fabric design approaches the jet age


New research into jet printing on textiles could lead to a faster, cheaper alternative to conventional ways of dyeing fabrics. Jet printing could also deliver valuable design benefits, such as a wider choice of colours and avoidance of the need to repeat patterns in a design.

The research is being carried out at Leeds University, with funding from the Swindon-based Engineering and Physical Sciences Research Council. Involving a number of industrial partners, the initiative is also bringing together textile experts, mechanical engineers, colour chemists, materials researchers and IT specialists for the first time in a single project in this field.

The textile industry currently prints fabrics using screen-printing technology. Although productive for long print runs, it is slow and expensive for today’s increasingly smaller order quantities. Jet printing offers many advantages, such as the ability to download designs straight from computer to material. It also has the potential to make short print runs economic and enable small quantities of fabrics to be made to order, thereby eliminating the need to keep stock. However, many technical barriers need to be overcome if jet printers are to be developed that are big enough, fast enough and reliable enough for commercial-scale use by the industry.

Dr Abbas Dehghani, one of the investigators at Leeds University, says: “Jet printing could revolutionise the world of design. It could extend the range and creativity of designs that are produced and substantially reduce the time it takes to bring them to market. Our project aims to bring the potential a step closer to reality”.

The present project is therefore addressing a wide range of relevant issues. For example, colour chemists are focusing on the key task of developing dyes that do not clog up a jet printer’s nozzles. Work is also being undertaken on the development of optical monitoring techniques able to inspect fabrics immediately before and after application of the dye, to help ensure that the right amount has been applied. Mechanical engineering researchers, meanwhile, are using computational fluid dynamics to model dyes and so help materials researchers develop piezo-ceramic print heads that apply them efficiently and neatly.

Jane Reck | alfa
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>