Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical control technique could enable microfluidic devices powered by surface tension

06.08.2003


Video images under monochromatic illumination show the optical selection and control of thin film flow patterns on horizontal substrates. For each of the first three images, the film pattern is shown at two different times. The lower third of each image displays a thin film those contact line is initially straight.
Image copyright: Physical Review Letters


Schematic illustration of microflow that is optically driven via the thermocapillary effect. An intensity-modulated beam from a light source illuminates a substrate that supports a tiny quantity of liquid at one end. Temperature variations arise from light absorption and induce surface tension gradients that drive the flow from the brighter (hotter) to darker (cooler) regions on the substrate.
Image copyright: Physical Review Letters


Reprogammable microarrays

Physicists at the Georgia Institute of Technology have demonstrated a new optical technique for controlling the flow of very small volumes of fluids over solid surfaces. The technique, which relies on changes in surface tension prompted by optically-generated thermal gradients, could provide the foundation for a new generation of dynamically reprogrammable microfluidic devices.

A paper describing the technique is the cover story for the August 1 issue of the journal Physical Review Letters. The research has been supported by the National Science Foundation and the Research Corporation.



Existing microfluidic devices, also known as "labs-on-a-chip," use tiny channels or pipes etched into silicon or other substrate material to manipulate very small volumes of fluid. Such "micropipe" devices are just beginning to appear on the market.

The Georgia Tech innovation could allow production of a new type of microfluidic device without etching channels. Instead, lasers or optical systems similar to those used in LCD projectors would produce complex patterns of varying-intensity light on a flat substrate material. Absorption of the light would produce differential heating on the substrate, creating a pattern of thermal gradients. Surface tension, a relatively strong force at micron size scales, would then cause nanoliter volumes of fluid to flow from the cooler areas to warmer areas through thermocapillary action.

"We envision that this could move multiple droplets or packets of fluid simultaneously, allowing arrays of drops to be moving at the same time at multiple locations," said Michael Schatz, a Georgia Tech associate professor of physics. "We could avoid putting detailed architectures onto the substrate. Instead, we would take advantage of advances in the miniaturization of optoelectronics to pattern the substrate with surface tension forces."

Because the temperature gradients would be formed by computer-controlled light patterns, pathways for the droplets could be quickly changed, allowing a reconfiguration not possible with existing microfluidic devices. And because the surface tension effects are strong at the micron scale, they could produce flow rates higher than channel-based microarrays, which must overcome large frictional forces. Finally, the substrate could be easily cleaned between uses, avoiding contamination.

In their paper, Schatz and colleagues Roman Grigoriev and Nicholas Garnier report their studies of how thermal gradients affect thin films of silicone oil on a surface of glass. The bottom of the glass had been painted black to absorb light, and a heat sink provided to prevent overheating.

The technique could theoretically also use liquid surfaces, where droplets of an immiscible liquid would be moved across a "substrate" fluid by the same surface tension forces. In a liquid-on-liquid system, the underlying fluid would also move, allowing higher flow rates.

In biological applications, fluids of interest are based on water, but Schatz says the optical principle could apply to most liquids. "This technique could apply to many fluid systems because it builds on an intrinsic property that nearly every fluid has – the temperature dependence of surface tension," he noted.

Though many technical hurdles remain, Schatz and his collaborators believe their technique could be the basis for a miniaturized lab-on-a-chip used for genetic or biochemical testing in the field. The easily reconfigurable system would be able to transport, merge, mix and split off streams of fluid flowing across a flat surface.

"If we can build devices that move fluids at small scales in a reconfigurable way, then in principle we can do all kinds of assays in the field at very high densities," Schatz explained. "This approach could be applied in a lot of different conditions."

Ultimately, the miniaturization of microfluidic devices could do for fluid handling what the modern semiconductor technology has done for electronics, allowing assays, chemical studies and other macro-scale processes to become smaller, cheaper and faster. "The shrinking of devices using microfluidics could be as revolutionary to our daily lives as microelectronics has been," Schatz said.

Unlike microelectronics, however, the drive to make microfluidic devices smaller and denser faces an immediate fundamental limit – the size of cells, DNA samples or protein molecules. If those are to be moved in fluid form, the microarray features can’t be much smaller than a few microns.

Among the challenges ahead for building optically-driven microfluidic devices are controlling evaporation, developing interfaces to get the tiny volumes of liquid onto the surface, and choosing the right combination of substrate and heat sink to provide distinct temperature gradient patterns without overheating the fluids, notes Grigoriev, an assistant professor in the School of Physics.

"We are at the point of testing strategies for constructing the building blocks, much like the transistors of microelectronics," he said. "Once those pieces are in place, it will be much more straightforward to bring them together into a working microfluidic device."

Technical contact: Mike Schatz, E-mail: michael.schatz@physics.gatech.edu

John Toon | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Desert ants cannot be fooled

23.11.2017 | Life Sciences

By saving cost and energy, the lighting revolution may increase light pollution

23.11.2017 | Earth Sciences

Retreating permafrost coasts threaten the fragile Arctic environment

23.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>