Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical control technique could enable microfluidic devices powered by surface tension

06.08.2003


Video images under monochromatic illumination show the optical selection and control of thin film flow patterns on horizontal substrates. For each of the first three images, the film pattern is shown at two different times. The lower third of each image displays a thin film those contact line is initially straight.
Image copyright: Physical Review Letters


Schematic illustration of microflow that is optically driven via the thermocapillary effect. An intensity-modulated beam from a light source illuminates a substrate that supports a tiny quantity of liquid at one end. Temperature variations arise from light absorption and induce surface tension gradients that drive the flow from the brighter (hotter) to darker (cooler) regions on the substrate.
Image copyright: Physical Review Letters


Reprogammable microarrays

Physicists at the Georgia Institute of Technology have demonstrated a new optical technique for controlling the flow of very small volumes of fluids over solid surfaces. The technique, which relies on changes in surface tension prompted by optically-generated thermal gradients, could provide the foundation for a new generation of dynamically reprogrammable microfluidic devices.

A paper describing the technique is the cover story for the August 1 issue of the journal Physical Review Letters. The research has been supported by the National Science Foundation and the Research Corporation.



Existing microfluidic devices, also known as "labs-on-a-chip," use tiny channels or pipes etched into silicon or other substrate material to manipulate very small volumes of fluid. Such "micropipe" devices are just beginning to appear on the market.

The Georgia Tech innovation could allow production of a new type of microfluidic device without etching channels. Instead, lasers or optical systems similar to those used in LCD projectors would produce complex patterns of varying-intensity light on a flat substrate material. Absorption of the light would produce differential heating on the substrate, creating a pattern of thermal gradients. Surface tension, a relatively strong force at micron size scales, would then cause nanoliter volumes of fluid to flow from the cooler areas to warmer areas through thermocapillary action.

"We envision that this could move multiple droplets or packets of fluid simultaneously, allowing arrays of drops to be moving at the same time at multiple locations," said Michael Schatz, a Georgia Tech associate professor of physics. "We could avoid putting detailed architectures onto the substrate. Instead, we would take advantage of advances in the miniaturization of optoelectronics to pattern the substrate with surface tension forces."

Because the temperature gradients would be formed by computer-controlled light patterns, pathways for the droplets could be quickly changed, allowing a reconfiguration not possible with existing microfluidic devices. And because the surface tension effects are strong at the micron scale, they could produce flow rates higher than channel-based microarrays, which must overcome large frictional forces. Finally, the substrate could be easily cleaned between uses, avoiding contamination.

In their paper, Schatz and colleagues Roman Grigoriev and Nicholas Garnier report their studies of how thermal gradients affect thin films of silicone oil on a surface of glass. The bottom of the glass had been painted black to absorb light, and a heat sink provided to prevent overheating.

The technique could theoretically also use liquid surfaces, where droplets of an immiscible liquid would be moved across a "substrate" fluid by the same surface tension forces. In a liquid-on-liquid system, the underlying fluid would also move, allowing higher flow rates.

In biological applications, fluids of interest are based on water, but Schatz says the optical principle could apply to most liquids. "This technique could apply to many fluid systems because it builds on an intrinsic property that nearly every fluid has – the temperature dependence of surface tension," he noted.

Though many technical hurdles remain, Schatz and his collaborators believe their technique could be the basis for a miniaturized lab-on-a-chip used for genetic or biochemical testing in the field. The easily reconfigurable system would be able to transport, merge, mix and split off streams of fluid flowing across a flat surface.

"If we can build devices that move fluids at small scales in a reconfigurable way, then in principle we can do all kinds of assays in the field at very high densities," Schatz explained. "This approach could be applied in a lot of different conditions."

Ultimately, the miniaturization of microfluidic devices could do for fluid handling what the modern semiconductor technology has done for electronics, allowing assays, chemical studies and other macro-scale processes to become smaller, cheaper and faster. "The shrinking of devices using microfluidics could be as revolutionary to our daily lives as microelectronics has been," Schatz said.

Unlike microelectronics, however, the drive to make microfluidic devices smaller and denser faces an immediate fundamental limit – the size of cells, DNA samples or protein molecules. If those are to be moved in fluid form, the microarray features can’t be much smaller than a few microns.

Among the challenges ahead for building optically-driven microfluidic devices are controlling evaporation, developing interfaces to get the tiny volumes of liquid onto the surface, and choosing the right combination of substrate and heat sink to provide distinct temperature gradient patterns without overheating the fluids, notes Grigoriev, an assistant professor in the School of Physics.

"We are at the point of testing strategies for constructing the building blocks, much like the transistors of microelectronics," he said. "Once those pieces are in place, it will be much more straightforward to bring them together into a working microfluidic device."

Technical contact: Mike Schatz, E-mail: michael.schatz@physics.gatech.edu

John Toon | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>