Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Liquid lenses" may shrink feature sizes on microchips

29.07.2003


New data from the National Institute of Standards and Technology (NIST) will assist in the design of optics for liquid immersion lithography, an old idea that recently has attracted new interest as a possible means of improving image resolution and thereby shrinking feature sizes of computer chips.

Conventional optical lithography has advanced sufficiently to achieve a resolution of 100 nanometers (billionths of a meter), but there are physical and technical limits to how much better it can get. By placing certain liquids between the final optical element and the silicon wafer, it may be possible to extend the resolution to 65 nanometers for state-of-the-art lithography using the 193-nanometer wavelength of light, or even 45 nanometers or below for future systems using the 157-nanometer wavelength.

A key characteristic of liquids to be used in immersion lithography is their refractive index, which affects how light bends as it crosses an interface, such as that between the liquid and a lens or a silicon wafer. Air has an index close to one. By contrast, water has a refractive index almost 50 percent higher. Placing this higher-index fluid between the lens and the silicon wafer reduces the resolution-limiting effects of diffraction, enabling imaging of smaller feature sizes.



NIST physicists recently presented preliminary measurements of the refractive index for high-purity water, considered the best candidate for a "liquid lens" at the 193-nanometer wavelength. They also determined that the index is very sensitive to temperature changes, a critical issue for optics design. A forthcoming paper describes the techniques used to make these technically difficult measurements.* Future work will focus on refining these measurements and collecting data on other liquids that may be useful in 157-nanometer lithography.

*Burnett, John H., and Simon Kaplan. In press. "Measurement of the refractive index and thermooptic coefficient of water near 193 nanometers." To appear in Proceedings of SPIE Optical Microlithography XVI (2003) 5040-188.0

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>