Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A breakthrough in heat transfer technology

21.07.2003


A revolutionary breakthrough in heat transfer technology that could improve process productivity and reduce energy consumption and waste, is being developed by Ashe Morris Ltd thanks to a £100,000 investment from NESTA (the National Endowment for Science, Technology & the Arts), the largest source of early stage funding in the UK.

Heat exchangers are used in many industrial, commercial and domestic applications and can be used to add or remove heat during chemical and biological manufacturing processes. In a batch manufacturing environment, such as fermenting beer, or making pharmaceuticals, current heat exchangers control the temperature of the process (where the reaction occurs) by regulating the heat transfer fluid temperature or the flow rate as it passes through a cooling jacket.

Ashe Morris is developing a new technology that controls the temperature by changing the effective heat transfer area itself to control the process temperature. In a batch manufacturing application, the heat transfer fluid will flow around up to 100 independent elements that are controlled by a multi-port linear valve with a piston. As the piston moves up and down the valve it brings the relevant elements into use and heats or cools that section.



This is simple innovation has many unique and innovative aspects to it. The design could offer more precise and fast temperature control and increase yield and quality in processes that are sensitive to shifts in temperature. This will, in turn, reduce chemical waste and the costs associated with recycling waste products.

It can also utilise calorimetry principles – which, for the first time, can now be used to measure the amount of heat evolved or absorbed in a chemical reaction in any size of plant. This method – unlike existing systems - allows for a reaction to be monitored and altered while it is in process. As a result, progress can be regularly checked, conditions optimised and potential problems avoided.

Furthermore, Ashe Morris believes that the new technology can reduce energy consumption by up to 90% in specific applications - thus reducing emissions. The system is also easily retrofitted so companies would not need to abandon existing equipment to benefit from the new technology.

Jeremy Newton, Chief Executive of NESTA, said: "Despite generating considerable market interest Ashe Morris was stuck in an early stage equity gap and needed to secure funding to develop the project. A NESTA Invention & Innovation award of £100,000 will do just that, helping to take this unique idea to the next stage of investment. This idea is both brilliant and simple and could be an excellent investment for NESTA and the UK as a whole."

Contact:

National Endowment for Science, Technology & the Arts, NESTA
Fishmongers’ Chambers,
110 Upper Thames Street,
London EC4R 3TW
Tel: 020 7645 9518
Fax 020 7645 9501

Joseph Meaney | alfa
Further information:
http://www.nesta.org.uk

More articles from Process Engineering:

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>