Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A biological technique could save up to 2 million euros at sewage treatment plants

15.07.2003


A new method for treating the smell of rotten eggs emitted by sewage plants, developed in conjunction by a researcher at the Universitat Autònoma de Barcelona’s Engineering School (ETSE) and a researcher from the University of California, could lead to worldwide savings of two million euros a year. The researchers have discovered a simple method for transforming the chemical odour filters currently installed in treatment plants into equally efficient, but cheaper and less toxic, biological filters.


Blocks of polyurethane foam with the bacterial covering that substitutes chemical filters in the treatment of smells


The Californian plant where the biological method was tested successfully. The tower on the left uses chemical filters, while the one on the right has been fitted with a biological filter



The treatment of sewage causes unpleasant smells due to emissions of such gasses as hydrogen sulfide (H2S), along with other compounds such as sulfur compounds, amines and carboxylic acids. Of all these gasses, the most noticeable is hydrogen sulfide, with its strong smell of rotten eggs. Therefore, sewage treatment plants include chemical filters for the control of such bad smells. These filters are fast absorbers and degraders of the whole volume of hydrogen sulfide generated, but there are major disadvantages: they are expensive, and generate and use toxic products. The alternative to using chemical filters is the use of biological filters, based on the biodegradation of hydrogen sulfide using bacteria. Until now, such filters were too voluminous to be used in plants treating large amounts of gasses.

The lecturer from the UAB’s High Engineering School (ETSE), David Gabriel, along with Marc A. Deshusses, lecturer at the University of California (USA), have developed an alterative that can transform the chemical filters used until now into biological filters that are just as fast and effective as the former. Via a cheap and simple conversion process, the new biological filters degrade the hydrogen sulfide in a record time: with some 2 seconds of contact between the gas and the filter. The invention has already been tested in Californian sewage plants (USA).


The transformation of a treatment plant’s filter to the new system designed by the two researchers would cost around 50,000 euros, but would imply savings of up to 30,000 euros a year in operational costs and expenses on chemical products. The researchers presented their findings in the prestigious magazine Proceedings of the National Academy of Sciences (PNAS), and state in their article that, considering between 25% and 40% of the chemical filters currently in use around the world can be transformed into biological filters, this transformation could lead to worldwide annual savings of up to 2,000 million euros.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Process Engineering:

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>