Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accurate milk enzyme measurement may cut cheese processing cost

30.05.2003


A new method to accurately measure quantities of a cheese-ripening enzyme in milk could reduce the time and cost of producing cheese, according to a report by Purdue University researchers.


Kirby Hayes hopes research at Purdue will help cheese producers lower production costs by shortening the time it takes cheese, like this Swiss variety, to ripen. Hayes is an assistant professor of food science. (Agricultural Communication photo/Tom Campbell)



Infrared spectroscopy was used in combination with statistical analysis to determine the concentration of plasminogen, a form of the enzyme integral to cheese manufacturing. The study, by co-authors Lisa Mauer and Kirby Hayes, both assistant professors in the Department of Food Science, is published in the May issue of the International Dairy Journal.

"This method allows us to see how much plasminogen there is in the conditions that we’re manipulating," said Hayes, a food chemist. "When we combine this information with currently available assays, or tests, for enzyme activity, we can look at both location and activity.


"Ultimately, this research is to gain a better understanding of the quality of both fluid milk products and fermented milk products, such as cheese and yogurt, because this enzyme affects quality both negatively and positively."

To reduce ripening time on a commercial scale, researchers will have to learn how to manipulate the enzyme system by changing specific factors such as the pH of milk during fermentation, Hayes said.

"The Holy Grail is trying to reduce cheese ripening time by understanding these enzymes," he said.

The research team focused on plasminogen concentrations in solutions that also contained milk proteins, which can change the enzyme’s activity and interfere with current testing methods. In a second part of the study, they added to the same type of solution both plasminogen and plasmin, an active form of the enzyme. They wanted to determine if Fourier-transform Infrared spectroscopy (FT-IR) could differentiate between plasmin and plasminogen and whether the method could measure how much of each was in the solution.

FT-IR uses wavelengths of light to identify types of chemical bonds. Each type of molecule absorbs light differently, producing a spectrum. Scientists use this spectral information to identify the compound much in the way a fingerprint can identify a person.

The milk enzymes the Purdue researchers are studying occur naturally in the body and are blood-borne catalysts that break down other proteins in milk. This decomposition causes milk to spoil or to ripen into cheese and other fermented dairy products. Plasmin also exists in humans as part of the blood-clotting system.

"FT-IR is a food analysis tool that has been used to measure organic compounds, such as carbohydrates, lipids, proteins and enzymes, for biomedical and pharmaceutical research," Mauer said. "However it’s more difficult to apply to foods because of the hundreds of compounds in them.

"FT-IR is basically a physical chemistry method. It gives a unique fingerprint of whatever you’re trying to measure."

By creating solutions with known concentrations of the enzymes, the researchers determined that FT-IR could accurately measure the amount of plasminogen and plasmin. With this information, they were able to create a model of the plasmin system function that can be used in future studies into the enzyme’s impact on milk products.

"This research really can have a major economic impact," Mauer said. "It’s desirable for the enzyme to cause cheese ripening, but not for it to gel shelf-stable milks. So, in one case we’re trying to speed up plasminogen activation and plasmin breaking down of milk proteins; in the other case we’re trying to stop the reactions."

In the United States, 8 billion pounds of cheese is produced annually at a cost of about 1.3 cents per pound per month of ripening, according to U.S. Department of Agriculture estimates. The ripening process takes three to 12 months depending on the type of cheese.

Plasmin is the substance that gives cheeses that have been aged longer a sharper flavor.

"Think about Colby or a new cheddar verses an aged cheddar cheese; these are two very distinct flavors," Mauer said. "That’s what the enzyme system does – it breaks down proteins and releases some of these bitter compounds."

The scientists will investigate different processing treatments and their effects on the plasmin system in an effort to make these methods commercially viable, Mauer said.

The other scientist participating in this study was Banu Ozen, who was a postdoctoral student in the Department of Food Science at the time of the research.

The Indiana 21st Century Research and Technology Fund, the U.S. Department of Agriculture and Purdue University provided funding for this research.

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030529.Mauer.plasmin.html

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>