Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accurate milk enzyme measurement may cut cheese processing cost

30.05.2003


A new method to accurately measure quantities of a cheese-ripening enzyme in milk could reduce the time and cost of producing cheese, according to a report by Purdue University researchers.


Kirby Hayes hopes research at Purdue will help cheese producers lower production costs by shortening the time it takes cheese, like this Swiss variety, to ripen. Hayes is an assistant professor of food science. (Agricultural Communication photo/Tom Campbell)



Infrared spectroscopy was used in combination with statistical analysis to determine the concentration of plasminogen, a form of the enzyme integral to cheese manufacturing. The study, by co-authors Lisa Mauer and Kirby Hayes, both assistant professors in the Department of Food Science, is published in the May issue of the International Dairy Journal.

"This method allows us to see how much plasminogen there is in the conditions that we’re manipulating," said Hayes, a food chemist. "When we combine this information with currently available assays, or tests, for enzyme activity, we can look at both location and activity.


"Ultimately, this research is to gain a better understanding of the quality of both fluid milk products and fermented milk products, such as cheese and yogurt, because this enzyme affects quality both negatively and positively."

To reduce ripening time on a commercial scale, researchers will have to learn how to manipulate the enzyme system by changing specific factors such as the pH of milk during fermentation, Hayes said.

"The Holy Grail is trying to reduce cheese ripening time by understanding these enzymes," he said.

The research team focused on plasminogen concentrations in solutions that also contained milk proteins, which can change the enzyme’s activity and interfere with current testing methods. In a second part of the study, they added to the same type of solution both plasminogen and plasmin, an active form of the enzyme. They wanted to determine if Fourier-transform Infrared spectroscopy (FT-IR) could differentiate between plasmin and plasminogen and whether the method could measure how much of each was in the solution.

FT-IR uses wavelengths of light to identify types of chemical bonds. Each type of molecule absorbs light differently, producing a spectrum. Scientists use this spectral information to identify the compound much in the way a fingerprint can identify a person.

The milk enzymes the Purdue researchers are studying occur naturally in the body and are blood-borne catalysts that break down other proteins in milk. This decomposition causes milk to spoil or to ripen into cheese and other fermented dairy products. Plasmin also exists in humans as part of the blood-clotting system.

"FT-IR is a food analysis tool that has been used to measure organic compounds, such as carbohydrates, lipids, proteins and enzymes, for biomedical and pharmaceutical research," Mauer said. "However it’s more difficult to apply to foods because of the hundreds of compounds in them.

"FT-IR is basically a physical chemistry method. It gives a unique fingerprint of whatever you’re trying to measure."

By creating solutions with known concentrations of the enzymes, the researchers determined that FT-IR could accurately measure the amount of plasminogen and plasmin. With this information, they were able to create a model of the plasmin system function that can be used in future studies into the enzyme’s impact on milk products.

"This research really can have a major economic impact," Mauer said. "It’s desirable for the enzyme to cause cheese ripening, but not for it to gel shelf-stable milks. So, in one case we’re trying to speed up plasminogen activation and plasmin breaking down of milk proteins; in the other case we’re trying to stop the reactions."

In the United States, 8 billion pounds of cheese is produced annually at a cost of about 1.3 cents per pound per month of ripening, according to U.S. Department of Agriculture estimates. The ripening process takes three to 12 months depending on the type of cheese.

Plasmin is the substance that gives cheeses that have been aged longer a sharper flavor.

"Think about Colby or a new cheddar verses an aged cheddar cheese; these are two very distinct flavors," Mauer said. "That’s what the enzyme system does – it breaks down proteins and releases some of these bitter compounds."

The scientists will investigate different processing treatments and their effects on the plasmin system in an effort to make these methods commercially viable, Mauer said.

The other scientist participating in this study was Banu Ozen, who was a postdoctoral student in the Department of Food Science at the time of the research.

The Indiana 21st Century Research and Technology Fund, the U.S. Department of Agriculture and Purdue University provided funding for this research.

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030529.Mauer.plasmin.html

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>