Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwaves could take the grind out of the rock business

16.05.2003


The feasibility of using microwaves to extract minerals from rocks has been demonstrated by UK researchers.



This revolutionary technique could cut mining and mineral processing industry costs, and make it viable to process previously uneconomic mineral reserves. It could also help the environment by saving energy as 3 – 5% of the world’s entire electrical energy output is used for the size reduction of rocks and minerals.

The technique has been developed by engineers at the University of Nottingham, with funding from the Swindon based Engineering and Physical Sciences Research Council.


Conventional practice is to crush chunks of mined ore (containing copper or zinc, for example) and then grind them into smaller pieces using energy-hungry grinding mills. Typically, only 1% of the energy consumed in rock grinding actually results in size reduction, making the process very inefficient.

The new research has investigated the use of microwaves to weaken mineral ores prior to the grinding mill stage. It has focused on the principle that rocks are made up from many constituent minerals, some of which heat rapidly and expand when subjected to microwaves, while others do not heat and expand at all. This stress causes the rock to weaken and crack. It will then fall apart much more easily in the grinding mill.

The research team has looked at the best way to microwave different rock types. This has involved using computer simulations to calculate the timing and power of microwaving required, and then testing these calculations in a microwave cavity where the rocks are exposed to the microwaves. The team has found that some rocks need to be microwaved for less than a tenth of a second to produce the desired effect.

The work has attracted considerable interest from the mining industry and a major company plans to put it into practical application, if further tests prove successful.

The research has been led by Dr Sam Kingman of the University’s School of Chemical, Environmental and Mining Engineering. Dr Kingman says: “Grinding accounts for over half of the operating costs in a typical metal ore mine. The new technique could reduce these grinding costs by over 50%”.

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>