Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwaves could take the grind out of the rock business

16.05.2003


The feasibility of using microwaves to extract minerals from rocks has been demonstrated by UK researchers.



This revolutionary technique could cut mining and mineral processing industry costs, and make it viable to process previously uneconomic mineral reserves. It could also help the environment by saving energy as 3 – 5% of the world’s entire electrical energy output is used for the size reduction of rocks and minerals.

The technique has been developed by engineers at the University of Nottingham, with funding from the Swindon based Engineering and Physical Sciences Research Council.


Conventional practice is to crush chunks of mined ore (containing copper or zinc, for example) and then grind them into smaller pieces using energy-hungry grinding mills. Typically, only 1% of the energy consumed in rock grinding actually results in size reduction, making the process very inefficient.

The new research has investigated the use of microwaves to weaken mineral ores prior to the grinding mill stage. It has focused on the principle that rocks are made up from many constituent minerals, some of which heat rapidly and expand when subjected to microwaves, while others do not heat and expand at all. This stress causes the rock to weaken and crack. It will then fall apart much more easily in the grinding mill.

The research team has looked at the best way to microwave different rock types. This has involved using computer simulations to calculate the timing and power of microwaving required, and then testing these calculations in a microwave cavity where the rocks are exposed to the microwaves. The team has found that some rocks need to be microwaved for less than a tenth of a second to produce the desired effect.

The work has attracted considerable interest from the mining industry and a major company plans to put it into practical application, if further tests prove successful.

The research has been led by Dr Sam Kingman of the University’s School of Chemical, Environmental and Mining Engineering. Dr Kingman says: “Grinding accounts for over half of the operating costs in a typical metal ore mine. The new technique could reduce these grinding costs by over 50%”.

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>