Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwaves could take the grind out of the rock business

16.05.2003


The feasibility of using microwaves to extract minerals from rocks has been demonstrated by UK researchers.



This revolutionary technique could cut mining and mineral processing industry costs, and make it viable to process previously uneconomic mineral reserves. It could also help the environment by saving energy as 3 – 5% of the world’s entire electrical energy output is used for the size reduction of rocks and minerals.

The technique has been developed by engineers at the University of Nottingham, with funding from the Swindon based Engineering and Physical Sciences Research Council.


Conventional practice is to crush chunks of mined ore (containing copper or zinc, for example) and then grind them into smaller pieces using energy-hungry grinding mills. Typically, only 1% of the energy consumed in rock grinding actually results in size reduction, making the process very inefficient.

The new research has investigated the use of microwaves to weaken mineral ores prior to the grinding mill stage. It has focused on the principle that rocks are made up from many constituent minerals, some of which heat rapidly and expand when subjected to microwaves, while others do not heat and expand at all. This stress causes the rock to weaken and crack. It will then fall apart much more easily in the grinding mill.

The research team has looked at the best way to microwave different rock types. This has involved using computer simulations to calculate the timing and power of microwaving required, and then testing these calculations in a microwave cavity where the rocks are exposed to the microwaves. The team has found that some rocks need to be microwaved for less than a tenth of a second to produce the desired effect.

The work has attracted considerable interest from the mining industry and a major company plans to put it into practical application, if further tests prove successful.

The research has been led by Dr Sam Kingman of the University’s School of Chemical, Environmental and Mining Engineering. Dr Kingman says: “Grinding accounts for over half of the operating costs in a typical metal ore mine. The new technique could reduce these grinding costs by over 50%”.

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>