Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ambient Intelligence laboratory

07.05.2003


Today there are evermore intelligent objects, i.e., more devices that adapt to our needs. For example, there is intelligent clothing, intelligent computers, and intelligent household devices such as washing machines, music centres, lamps, and so on.



In fact, it is currently possible for a sensor at the entrance to a dwelling to recognise the voice or the odour of the owner and simultaneously open the door. It is also possible, on entering the house and depending on the mood or physical state of the proprietor, the music centre switches itself on, playing music suitable to the occasion, the lights turn themselves on with greater or lesser intensity and the walls change colour. And all this is done automatically. The devices talk to the owner and already know what language they have to speak as they have been pre-taught.

The term Ambient Intelligence arose in Europe. The European Commission created a group to define what was to be Ambient Intelligence and what applications could it be put to use.
What changes will this new technology bring?


To date we have done everything through reading and writing but, from here on, we propose using all the senses (including smell, hearing, voice and so on). The system of videoconferencing will become quite normal. Also, although currently how the objects are handled has to be learned and thanks to this new technology, it will be nevertheless the objects that will learn how we use them; today the users base themselves on words, tomorrow on contexts.

What is Tekniker doing?

At the European level it is the Philipps company that is developing much of this new technology and, in the United States, the MIT. These two bodies are researching all everyday objects and situations: household devices, cars, the effect of traffic and so on.

The Tekniker Technological Centre wants to focus on the industrial sector and to develop methods to give orders to machines. Thus, from the point of view of safety, the machine will be capable of recognising the operator and at all times tell him/her about which tool has to be used. In some cases the required tool can be supplied to the operator by a robot. Also, the machine will check on the operator’s good working practices such as the wearing of gloves.

The Tekniker project has just begun and will last for two years. The idea for now is to initiate a laboratory. They will use a machining tool, a specialised milling machine to be exact. This machine is currently being used in a conventional manner but, in the future, it will use voice and smell sensors and the operator will wear specialised glasses which will provide him/her with all the necessary information about the machine so that it can be operated more safely. In this way many mistakes can be avoided.

Thanks to electronic noses, there will be the possibility of controlling the quality of the product. If the mixtures of materials are incorrect, the electronic nose will detect an anomalous odour and warn the operator immediately.

The experts working on this project at Tekniker are aware that this technology also has drawbacks. In fact, amongst other things, will be less autonomous and have less privacy. Moreover, it is not advisable that there be too many sensors around the operators as this could interfere with their work. Sociologists are working on the project in order to analyse and provide solutions to these drawbacks.

Fco. Javier García Robles | Basque Research
Further information:
http://www.tekniker.es

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>