Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ambient Intelligence laboratory

07.05.2003


Today there are evermore intelligent objects, i.e., more devices that adapt to our needs. For example, there is intelligent clothing, intelligent computers, and intelligent household devices such as washing machines, music centres, lamps, and so on.



In fact, it is currently possible for a sensor at the entrance to a dwelling to recognise the voice or the odour of the owner and simultaneously open the door. It is also possible, on entering the house and depending on the mood or physical state of the proprietor, the music centre switches itself on, playing music suitable to the occasion, the lights turn themselves on with greater or lesser intensity and the walls change colour. And all this is done automatically. The devices talk to the owner and already know what language they have to speak as they have been pre-taught.

The term Ambient Intelligence arose in Europe. The European Commission created a group to define what was to be Ambient Intelligence and what applications could it be put to use.
What changes will this new technology bring?


To date we have done everything through reading and writing but, from here on, we propose using all the senses (including smell, hearing, voice and so on). The system of videoconferencing will become quite normal. Also, although currently how the objects are handled has to be learned and thanks to this new technology, it will be nevertheless the objects that will learn how we use them; today the users base themselves on words, tomorrow on contexts.

What is Tekniker doing?

At the European level it is the Philipps company that is developing much of this new technology and, in the United States, the MIT. These two bodies are researching all everyday objects and situations: household devices, cars, the effect of traffic and so on.

The Tekniker Technological Centre wants to focus on the industrial sector and to develop methods to give orders to machines. Thus, from the point of view of safety, the machine will be capable of recognising the operator and at all times tell him/her about which tool has to be used. In some cases the required tool can be supplied to the operator by a robot. Also, the machine will check on the operator’s good working practices such as the wearing of gloves.

The Tekniker project has just begun and will last for two years. The idea for now is to initiate a laboratory. They will use a machining tool, a specialised milling machine to be exact. This machine is currently being used in a conventional manner but, in the future, it will use voice and smell sensors and the operator will wear specialised glasses which will provide him/her with all the necessary information about the machine so that it can be operated more safely. In this way many mistakes can be avoided.

Thanks to electronic noses, there will be the possibility of controlling the quality of the product. If the mixtures of materials are incorrect, the electronic nose will detect an anomalous odour and warn the operator immediately.

The experts working on this project at Tekniker are aware that this technology also has drawbacks. In fact, amongst other things, will be less autonomous and have less privacy. Moreover, it is not advisable that there be too many sensors around the operators as this could interfere with their work. Sociologists are working on the project in order to analyse and provide solutions to these drawbacks.

Fco. Javier García Robles | Basque Research
Further information:
http://www.tekniker.es

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>