Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Researchers Develop New Plastic Recycling Process

16.04.2003


Plastics are everywhere these days, but current recycling techniques allow only a very limited portion to be reclaimed after initial use. Researchers in the Department of Chemical Engineering at North Carolina State University, working to change that, have developed a unique recycling process for some of the most common kinds of polymers.


Joan Patterson, doctoral student in chemical engineering at North Carolina State University, demonstrates the twin-screw extruder that will be used to recycle PET plastic bottles into plastic pellets, in bag at left.
© NC State University



The familiar soda bottle is made of a plastic called polyethylene terephthalate (PET). These bottles are ubiquitous, yet recycling them poses challenges, primarily because of contaminants or impurities. Dr. George W. Roberts, professor of chemical engineering, Dr. Saad A. Khan, professor of chemical engineering and director of the chemical engineering graduate program, and Joan Patterson, doctoral student in chemical engineering, are working on a project designed to address this problem.

“We’re trying to develop a process where we can take waste polymer and convert it back into the material from which it was made. In the process, all the impurities are removed from the polymer,” said Roberts. “Ideally, this should be done in a single step because the economics have to make sense for the process to have widespread applicability.”


The process, according to Roberts, has two unique elements. “First we run the process in a machine called a twin-screw extruder, which has high throughput. A lot of polymer can be processed in a very short time,” he said. “The extruder melts the PET and creates very thin films so we can interface the high molecular weight polymer with another material, either ethylene
glycol or methanol, that will reduce the molecular weight of the polymer substantially.”

Second, supercritical carbon dioxide (CO2) is combined with the ethylene glycol or methanol, which reduces the viscosity, or stickiness, of the polymer, making it easier to process and allowing better contact between the materials. At the end of the process, the CO2 is vented from the extruder and run through a condenser, where dissolved impurities can be removed. The CO2 is then recycled.

The process has several advantages. The conversion is done under efficient processing conditions and is a one-step, environmentally benign procedure. In addition, the process can be tailor-made for materials of different molecular weights.

A single-screw extruder has been used successfully in the research laboratory at NC State for this procedure. Now Roberts and his team are looking for ways to make this process economically feasible for an industrial-scale operation. “The basic reaction of ethylene glycol with the polymer is known, but our preliminary data say that this enhanced reaction is several orders of magnitude faster when done in the extruder with supercritical CO2 than if it is run conventionally,” said Roberts.“That translates into lower cost.”

According to Khan, twin-screw extruders are common in the workplace, so these machines can be reconfigured to use supercritical CO2. First, the research team must determine how variables – including rate of flow of polymer; the amounts of CO2, ethylene glycol or methanol; temperature; pressure of CO2; and machine configuration – affect the processing.

“To our knowledge, the machines in the marketplace have never been used for this purpose, but they can be modified for this process,” said Roberts. “Part of our research involves configuring the existing machines so they can give optimal performance.”

groberts@eos.ncsu.edu | NC State University
Further information:
http://www.ncsu.edu/news/press_releases/03_04/114.htm

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>