Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon, NASA to develop robot illustrating how to seek life on distant planets

02.04.2003


A team of Carnegie Mellon University and NASA scientists will travel to the Atacama Desert in northern Chile in April to conduct research that will help them develop and deploy a robot and instruments that may someday enable other robots to find life on Mars. The researchers will be using the Atacama, described as the most arid region on Earth, as a Martian analog.



The group is funded with a $3 million, three-year grant from NASA to the university’s Robotics Institute. They are collaborating with scientists at Carnegie Mellon’s Molecular Biosensor and Imaging Center who have a separate $900,000 grant from NASA to develop fluorescent dyes and automated microscopes that the robot will eventually use to locate various forms of life.

The project falls under NASA’s Astrobiology Science and Technology for Exploring Planets or ASTEP program, which concentrates on pushing the limits of technology in harsh environments. NASA experts believe that by pushing the known limits of life on Earth scientists will be better prepared to search for life on other worlds.


"Our goal is to make genuine discoveries about the limits of life on Earth and to generate knowledge that can be applied to future NASA missions to Mars," said project leader David Wettergreen, a research scientist at Carnegie Mellon’s Robotics Institute. "We will conduct three annual field experiments in the Atacama. Each time, an increasingly capable robot will use sensing and intelligence to find land forms or environmental conditions that could harbor life."

This year, the team will be using an autonomous, solar-powered robot named Hyperion to determine the optimum design, software and instrumentation for a new robot that will be used in the more extensive experiments to be conducted over the next two years. In 2001, Hyperion was taken to Devon Island in the Canadian Arctic where it successfully demonstrated a concept called Sun-Synchronous Navigation. It tracked the sun as a source of power and explored its surroundings as it traveled continuously through a 24-hour period of daylight.

During this year’s visit to the Atacama, researchers will focus on measurements and experiments with the robot’s hardware and software components. They will test Hyperion as it travels through the desert and collect data with scientific instruments, including a fluorescence imager, near-infrared spectrometer and a high-resolution panoramic imager.

Wettergreen said that Hyperion would travel some 10 kilometers through the desert this year while the researchers study issues related to robotic autonomy. The robot’s solar panels have been laid flat on top of its body for the upcoming experiments so it can capture the maximum amount of sunlight in the equatorial environment. In the Arctic, the panels were mounted vertically, like sails on a boat, because the sun was often low on the horizon.

A next generation robot, developed from the findings of this year’s work, should perform 50 kilometers of autonomous traverse in the desert in 2004. In 2005, the final year of the project, a robot equipped with a full array of instruments should operate autonomously as it travels 200 kilometers over a two-month period. During this climactic journey, the robot should map sites where life is abundant, and then move into drier areas where life has not been detected.

In 2005, plans call for the science team to operate as if it were exploring Mars in a scenario that would include a time delay and limited communication. "We’ll operate under the constraints of Martian exploration in order to better develop procedures for seeking life on another planet," Wettergreen said. "The robot will monitor its own power, balance, locomotion, communication and science operations as it goes. It needs to be able to move into unknown terrain using cameras and internal sensors--the same instruments and information that would be available to a robot exploring Mars."

In addition to Wettergreen, the Carnegie Mellon team heading to the Atacama includes William L. "Red" Whittaker, the Robotics Institute’s Fredkin research professor and the project’s principal investigator; Alan S. Waggoner, professor of biological sciences and director of Molecular Biosensor and Imaging Center; James P. Teza, research engineer; Michael D. Wagner, research programmer, and Robotics Institute doctoral students Christopher Urmson, Paul Tompkins, Denis Strelow and Vandi Verma.

Nathalie Cabrol, a planetary scientist at NASA’s Ames Research Center and the SETI Institute, will lead the science team for the investigation of the Atacama. Members of the science team are geologists and biologists who study both Earth and Mars at institutions including NASA Ames and the Johnson Space Center, SETI Institute, Jet Propulsion Laboratory, the University of Arizona, the University of Tennessee, Carnegie Mellon and Universidad Catolica del Norte (Chile).

"Their role in the first-year campaign will be to become acquainted with the data sent by the rover and assess the validity of astrobiological exploration strategies that will be used in the 2004 and 2005 field campaigns and on future missions to search for habitats and life on Mars," said Cabrol.

Also under development is the capability for education and science communities to experience the mission through the EventScope interface (www.eventscope.org). EventScope converts data from rovers and orbiters into three-dimensional "virtual worlds" that realistically represent remote sites, enabling students to experience the mission from their classroom computers.

EventScope’s team is directed by Peter Coppin, a research scientist at Carnegie Mellon’s STUDIO for Creative Inquiry, and includes experts in software engineering, interactive art and educational technology working to develop next generation tools for public remote experience. The goal is to have hundreds of students participating remotely in the Atacama experiment by the end of 2005.

Anne Watzman | EurekAlert!
Further information:
http://www.cmu.edu/
http://www.frc.ri.cmu.edu/atacama
http://www.cmu.edu/PR/releases03/030210_mars.html

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>