Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fabricated microvascular networks could create compact fluidic factories

24.03.2003


Using direct-write assembly of organic ink, researchers at the University of Illinois at Urbana-Champaign have developed a technique for fabricating three-dimensional microvascular networks. These tiny networks could function as compact fluidic factories in miniature sensors, chemical reactors, or computers used in applications from biomedicine to information technology.



"The fabrication technique produces a pervasive network of interconnected cylindrical channels, which can range from 10 to 300 microns in diameter," said Jennifer Lewis, a professor of materials science and engineering and of chemical engineering at Illinois. "Our approach opens up new avenues for device design that are currently inaccessible by conventional lithographic methods."

The microvascular networks also could be combined with self-healing functionality, "providing an analog to the human circulatory system for the next generation of autonomous healing materials," said Scott White, a professor of aeronautical and astronautical engineering and a researcher at the Beckman Institute for Advanced Science and Technology. "The embedded network would serve as a circulatory system for the continuous transport of repair chemicals to sites of damage within the material."


The scientists report their findings in a paper that has been accepted for publication in the journal Nature Materials, and posted on its Web site www.nature.com/materials.

To create a microvascular network, Lewis, White and graduate student Daniel Therriault begin by fabricating a scaffold using a robotic deposition apparatus and a fugitive organic ink. A computer-controlled robot squeezes the ink out of a syringe, almost like a cake decorator, building the scaffold layer by layer.

"The ink exits the nozzle as a continuous, rod-like filament that is deposited onto a moving platform, yielding a two-dimensional pattern," Lewis said. "After a layer is generated, the stage is raised and rotated, and another layer is deposited. This process is repeated until the desired structure is produced."

Once the scaffold has been created, it is surrounded with an epoxy resin. After curing, the resin is heated and the ink -- which liquefies -- is extracted, leaving behind a network of interlocking tubes and channels.

In the final step, the open network is filled with a photocurable resin. "The structure is then selectively masked and polymerized with ultraviolet light to plug selected channels," Lewis said. "Lastly, the uncured resin is drained, leaving the desired pathways in the completed network."

To demonstrate the effectiveness of their fabrication technique, the researchers built square spiral mixing towers within their microvascular networks. Each of the integrated tower arrays was made from a 16-layer scaffold. The mixing efficiency of these stair-cased towers was characterized by monitoring the mixing of two dyed fluid streams using fluorescent microscopy.

"Due to their complex architecture, these three-dimensional towers dramatically improve fluid mixing compared to simple one- and two-dimensional channels," White said. "By forcing the fluids to make right-angle turns as they wind their way up the tower, the fluid interface is made to fold on top of itself repeatedly. This chaotic advection, in addition to normal diffusion, causes the fluids to become well-mixed in a short linear distance."

In addition to serving as highly efficient and space-saving mixers in microfluidic devices, the microvascular networks offer improved functionality in the design of self-healing materials.

"With our current approach, we distribute microcapsules of healing agent throughout the material," White said. "Where damage occurs locally, the capsules break open and repair the material. With repeated damage in the same location, however, the supply of healing agent may become exhausted."

Using capillaries instead of capsules to carry the healing agent could improve the performance of self-healing materials, White said. "By incorporating a microvascular network within the material, we could continuously transport an unlimited supply of healing agent, significantly extending the lifetime of the material."

James E. Kloeppel | EurekAlert!
Further information:
http://www.nsf.gov/od/lpa/news/03/pr0330.htm

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>