Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fabricated microvascular networks could create compact fluidic factories

24.03.2003


Using direct-write assembly of organic ink, researchers at the University of Illinois at Urbana-Champaign have developed a technique for fabricating three-dimensional microvascular networks. These tiny networks could function as compact fluidic factories in miniature sensors, chemical reactors, or computers used in applications from biomedicine to information technology.



"The fabrication technique produces a pervasive network of interconnected cylindrical channels, which can range from 10 to 300 microns in diameter," said Jennifer Lewis, a professor of materials science and engineering and of chemical engineering at Illinois. "Our approach opens up new avenues for device design that are currently inaccessible by conventional lithographic methods."

The microvascular networks also could be combined with self-healing functionality, "providing an analog to the human circulatory system for the next generation of autonomous healing materials," said Scott White, a professor of aeronautical and astronautical engineering and a researcher at the Beckman Institute for Advanced Science and Technology. "The embedded network would serve as a circulatory system for the continuous transport of repair chemicals to sites of damage within the material."


The scientists report their findings in a paper that has been accepted for publication in the journal Nature Materials, and posted on its Web site www.nature.com/materials.

To create a microvascular network, Lewis, White and graduate student Daniel Therriault begin by fabricating a scaffold using a robotic deposition apparatus and a fugitive organic ink. A computer-controlled robot squeezes the ink out of a syringe, almost like a cake decorator, building the scaffold layer by layer.

"The ink exits the nozzle as a continuous, rod-like filament that is deposited onto a moving platform, yielding a two-dimensional pattern," Lewis said. "After a layer is generated, the stage is raised and rotated, and another layer is deposited. This process is repeated until the desired structure is produced."

Once the scaffold has been created, it is surrounded with an epoxy resin. After curing, the resin is heated and the ink -- which liquefies -- is extracted, leaving behind a network of interlocking tubes and channels.

In the final step, the open network is filled with a photocurable resin. "The structure is then selectively masked and polymerized with ultraviolet light to plug selected channels," Lewis said. "Lastly, the uncured resin is drained, leaving the desired pathways in the completed network."

To demonstrate the effectiveness of their fabrication technique, the researchers built square spiral mixing towers within their microvascular networks. Each of the integrated tower arrays was made from a 16-layer scaffold. The mixing efficiency of these stair-cased towers was characterized by monitoring the mixing of two dyed fluid streams using fluorescent microscopy.

"Due to their complex architecture, these three-dimensional towers dramatically improve fluid mixing compared to simple one- and two-dimensional channels," White said. "By forcing the fluids to make right-angle turns as they wind their way up the tower, the fluid interface is made to fold on top of itself repeatedly. This chaotic advection, in addition to normal diffusion, causes the fluids to become well-mixed in a short linear distance."

In addition to serving as highly efficient and space-saving mixers in microfluidic devices, the microvascular networks offer improved functionality in the design of self-healing materials.

"With our current approach, we distribute microcapsules of healing agent throughout the material," White said. "Where damage occurs locally, the capsules break open and repair the material. With repeated damage in the same location, however, the supply of healing agent may become exhausted."

Using capillaries instead of capsules to carry the healing agent could improve the performance of self-healing materials, White said. "By incorporating a microvascular network within the material, we could continuously transport an unlimited supply of healing agent, significantly extending the lifetime of the material."

James E. Kloeppel | EurekAlert!
Further information:
http://www.nsf.gov/od/lpa/news/03/pr0330.htm

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>