Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fabricated microvascular networks could create compact fluidic factories

24.03.2003


Using direct-write assembly of organic ink, researchers at the University of Illinois at Urbana-Champaign have developed a technique for fabricating three-dimensional microvascular networks. These tiny networks could function as compact fluidic factories in miniature sensors, chemical reactors, or computers used in applications from biomedicine to information technology.



"The fabrication technique produces a pervasive network of interconnected cylindrical channels, which can range from 10 to 300 microns in diameter," said Jennifer Lewis, a professor of materials science and engineering and of chemical engineering at Illinois. "Our approach opens up new avenues for device design that are currently inaccessible by conventional lithographic methods."

The microvascular networks also could be combined with self-healing functionality, "providing an analog to the human circulatory system for the next generation of autonomous healing materials," said Scott White, a professor of aeronautical and astronautical engineering and a researcher at the Beckman Institute for Advanced Science and Technology. "The embedded network would serve as a circulatory system for the continuous transport of repair chemicals to sites of damage within the material."


The scientists report their findings in a paper that has been accepted for publication in the journal Nature Materials, and posted on its Web site www.nature.com/materials.

To create a microvascular network, Lewis, White and graduate student Daniel Therriault begin by fabricating a scaffold using a robotic deposition apparatus and a fugitive organic ink. A computer-controlled robot squeezes the ink out of a syringe, almost like a cake decorator, building the scaffold layer by layer.

"The ink exits the nozzle as a continuous, rod-like filament that is deposited onto a moving platform, yielding a two-dimensional pattern," Lewis said. "After a layer is generated, the stage is raised and rotated, and another layer is deposited. This process is repeated until the desired structure is produced."

Once the scaffold has been created, it is surrounded with an epoxy resin. After curing, the resin is heated and the ink -- which liquefies -- is extracted, leaving behind a network of interlocking tubes and channels.

In the final step, the open network is filled with a photocurable resin. "The structure is then selectively masked and polymerized with ultraviolet light to plug selected channels," Lewis said. "Lastly, the uncured resin is drained, leaving the desired pathways in the completed network."

To demonstrate the effectiveness of their fabrication technique, the researchers built square spiral mixing towers within their microvascular networks. Each of the integrated tower arrays was made from a 16-layer scaffold. The mixing efficiency of these stair-cased towers was characterized by monitoring the mixing of two dyed fluid streams using fluorescent microscopy.

"Due to their complex architecture, these three-dimensional towers dramatically improve fluid mixing compared to simple one- and two-dimensional channels," White said. "By forcing the fluids to make right-angle turns as they wind their way up the tower, the fluid interface is made to fold on top of itself repeatedly. This chaotic advection, in addition to normal diffusion, causes the fluids to become well-mixed in a short linear distance."

In addition to serving as highly efficient and space-saving mixers in microfluidic devices, the microvascular networks offer improved functionality in the design of self-healing materials.

"With our current approach, we distribute microcapsules of healing agent throughout the material," White said. "Where damage occurs locally, the capsules break open and repair the material. With repeated damage in the same location, however, the supply of healing agent may become exhausted."

Using capillaries instead of capsules to carry the healing agent could improve the performance of self-healing materials, White said. "By incorporating a microvascular network within the material, we could continuously transport an unlimited supply of healing agent, significantly extending the lifetime of the material."

James E. Kloeppel | EurekAlert!
Further information:
http://www.nsf.gov/od/lpa/news/03/pr0330.htm

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>