Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer calculates when reinforced concrete will rust

21.03.2003


Dutch researchers have developed a computer model that calculates the rate at which salt and moisture penetrate reinforced concrete. The model can be used for both the design of new concrete structures as well as analysing the lifespan of existing ones.

Sander Meijers from Delft University of Technology studied the relationship between moisture transport and salt penetration in concrete. Concrete structures such as bridges and dams are designed with as long a lifespan as possible. If these structures are built in the sea or are exposed a lot to gritting salt then the reinforcement rods in the concrete eventually rust over the course of time. The consequences are damage and generally expensive repairs.

The researchers built a computer model that calculated how concrete responded to being exposed to salt and moisture. The model can process various external temperatures, humidities and salt concentrations. Furthermore, it can deal with so-called carbonate effects. These are changes in the chemical composition of the concrete that can result in different moisture characteristics.



The software developed can calculate a number of linked transport phenomena simultaneously. This means that reactions of concrete under various temperatures and degrees of humidity can be calculated.

Various studies were carried out to observe how salt penetrates concrete. For example, the researchers have used the model to show moisture transport in cement stone. Calculations have also been performed for concrete blocks submerged in seawater. In addition to this the researchers have studied how concrete responds to periodic exposure to salty water.

Meijers’ model and the associated software can be used for both the design of new concrete structures as well as the analysis of existing ones. With this it is possible to simulate how concrete is affected by various factors.

For further information please contact Dr Sander Meijers (Delft University of Technology, now working at Intron), tel +31 (0)345 585170, fax +31 (0)345 585171, e-mail: sme@intron.nl. The doctoral thesis was defended on 10 March 2003. Dr Meijers’ supervisors were Prof. J.M.J.M. Bijen and Prof. R. de Borst. An illustration of a damaged concrete bridge can be obtained from the Department of Information and Communication, Netherlands Organisation for Scientific Research (tel. +31 (0)70 344 0713, e-mail: voorlichting@nwo.nl).

The research was funded by the Technology Foundation STW.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>