Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer calculates when reinforced concrete will rust

21.03.2003


Dutch researchers have developed a computer model that calculates the rate at which salt and moisture penetrate reinforced concrete. The model can be used for both the design of new concrete structures as well as analysing the lifespan of existing ones.

Sander Meijers from Delft University of Technology studied the relationship between moisture transport and salt penetration in concrete. Concrete structures such as bridges and dams are designed with as long a lifespan as possible. If these structures are built in the sea or are exposed a lot to gritting salt then the reinforcement rods in the concrete eventually rust over the course of time. The consequences are damage and generally expensive repairs.

The researchers built a computer model that calculated how concrete responded to being exposed to salt and moisture. The model can process various external temperatures, humidities and salt concentrations. Furthermore, it can deal with so-called carbonate effects. These are changes in the chemical composition of the concrete that can result in different moisture characteristics.



The software developed can calculate a number of linked transport phenomena simultaneously. This means that reactions of concrete under various temperatures and degrees of humidity can be calculated.

Various studies were carried out to observe how salt penetrates concrete. For example, the researchers have used the model to show moisture transport in cement stone. Calculations have also been performed for concrete blocks submerged in seawater. In addition to this the researchers have studied how concrete responds to periodic exposure to salty water.

Meijers’ model and the associated software can be used for both the design of new concrete structures as well as the analysis of existing ones. With this it is possible to simulate how concrete is affected by various factors.

For further information please contact Dr Sander Meijers (Delft University of Technology, now working at Intron), tel +31 (0)345 585170, fax +31 (0)345 585171, e-mail: sme@intron.nl. The doctoral thesis was defended on 10 March 2003. Dr Meijers’ supervisors were Prof. J.M.J.M. Bijen and Prof. R. de Borst. An illustration of a damaged concrete bridge can be obtained from the Department of Information and Communication, Netherlands Organisation for Scientific Research (tel. +31 (0)70 344 0713, e-mail: voorlichting@nwo.nl).

The research was funded by the Technology Foundation STW.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>