Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underwater sensor system could protect reservoirs, drinking water

20.03.2003


A sensor system that can autonomously, continuously and in real-time monitor streams, lakes, ocean bays and other bodies of liquid may help solve problems for environmentalists, manufacturers and those in charge of homeland security, according to Penn State engineers.



"The importance of developing a network sensor technology for operation in liquid environments has recently been highlighted in reports detailing the chemical slurry of antibiotics, estrogen-type hormones, insecticides, nicotine and other chemicals in the rivers of industrialized countries," says Dr. Craig A. Grimes, associate professor of electrical engineering and materials science and engineering. "However, analysis is still done by physically collecting samples and analyzing them back in the laboratory."

Monitoring of rivers downstream from sewage treatment plants, large city water supplies, or the composition of a local pond must all be done by hand. This expensive, time-consuming and sometimes dangerous practice is always time delayed and may miss short duration episodes of pollution or contaminants. Continuous, in-place monitoring would be the easiest, most timely and least expensive way to track changes in bodies of water.


However, underwater monitoring is hampered because water interferes with the radio transfer of information, the most common method used to transfer information in the air. The researchers, who include Grimes; Xiping Yang, William R. Dreschel, Kefeng Zeng and Casey S. Mungle, graduate students, electrical engineering, Penn State; and Keat G. Ong at SenTech Corporation, State College, Pa., looked at a hierarchical, acoustic method to transfer the information from the sensors to the person monitoring the water.

The researchers are looking at systems that can monitor temperature, salinity, acidity and specific chemicals. Some of the same researchers, in collaboration with Dr. Michael Pishko, associate professor chemical engineering and material science at Penn State, are working on an inexpensive, disposable sensor for ricin, the highly poisonous protein found in castor beans and thought to be a potential terrorism agent. Sensors also exist for other harmful chemicals.

In the aqueous sensor network system an uplink node floats on the water’s surface and transfers the aqueous network data from the water to the air, where it is received by the command computer.

Beneath the surface, layers of nodes/sensors monitor the water and pass the information along to the uplink. Sending a message from the farthest node direct to the uplink underwater is not possible because of the way water decreases the strength of the acoustic signal, so the researchers use a node-to-node multi-hop information transfer system.

"Node-to-node communication enables wide-area coverage using modest node power levels making practical long-term monitoring," Grimes reported in a paper in the journal Sensors.

After the network of nodes is deployed, floating anchored in place in the water, the system must set up an identification tree. The uplink node broadcasts a signal containing its identity. Every node that receives that broadcast marks the uplink node as its parent node. These nodes then broadcast a signal. Every node that receives that signal, and has not yet identified a parent node, will record the signaling node as its parent and then broadcast to even more distant nodes. A cascade of parent nodes eventually covers the entire system.

Periodically, the network sends data through the system. Each node sends its sensor data to its parent node. That node sends the received data and its own data to its parent node until all the data are received by the uplink node, which converts the signal from acoustic to radio frequency and sends the information through the air to the command, or central, computer for display and evaluation.

The host node stores the sensor data from all the nodes in its memory preserving the identity of the node that produced the data so that water-monitoring personnel can track unusual readings or contaminants to their source location.

The researchers designed the nodes so that the chemical sensors are immersed in water separate from the communication electronics, making it easy to change the sensors on the nodes without having to alter the signaling network.


The National Science Foundation supported this work.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>