Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underwater sensor system could protect reservoirs, drinking water

20.03.2003


A sensor system that can autonomously, continuously and in real-time monitor streams, lakes, ocean bays and other bodies of liquid may help solve problems for environmentalists, manufacturers and those in charge of homeland security, according to Penn State engineers.



"The importance of developing a network sensor technology for operation in liquid environments has recently been highlighted in reports detailing the chemical slurry of antibiotics, estrogen-type hormones, insecticides, nicotine and other chemicals in the rivers of industrialized countries," says Dr. Craig A. Grimes, associate professor of electrical engineering and materials science and engineering. "However, analysis is still done by physically collecting samples and analyzing them back in the laboratory."

Monitoring of rivers downstream from sewage treatment plants, large city water supplies, or the composition of a local pond must all be done by hand. This expensive, time-consuming and sometimes dangerous practice is always time delayed and may miss short duration episodes of pollution or contaminants. Continuous, in-place monitoring would be the easiest, most timely and least expensive way to track changes in bodies of water.


However, underwater monitoring is hampered because water interferes with the radio transfer of information, the most common method used to transfer information in the air. The researchers, who include Grimes; Xiping Yang, William R. Dreschel, Kefeng Zeng and Casey S. Mungle, graduate students, electrical engineering, Penn State; and Keat G. Ong at SenTech Corporation, State College, Pa., looked at a hierarchical, acoustic method to transfer the information from the sensors to the person monitoring the water.

The researchers are looking at systems that can monitor temperature, salinity, acidity and specific chemicals. Some of the same researchers, in collaboration with Dr. Michael Pishko, associate professor chemical engineering and material science at Penn State, are working on an inexpensive, disposable sensor for ricin, the highly poisonous protein found in castor beans and thought to be a potential terrorism agent. Sensors also exist for other harmful chemicals.

In the aqueous sensor network system an uplink node floats on the water’s surface and transfers the aqueous network data from the water to the air, where it is received by the command computer.

Beneath the surface, layers of nodes/sensors monitor the water and pass the information along to the uplink. Sending a message from the farthest node direct to the uplink underwater is not possible because of the way water decreases the strength of the acoustic signal, so the researchers use a node-to-node multi-hop information transfer system.

"Node-to-node communication enables wide-area coverage using modest node power levels making practical long-term monitoring," Grimes reported in a paper in the journal Sensors.

After the network of nodes is deployed, floating anchored in place in the water, the system must set up an identification tree. The uplink node broadcasts a signal containing its identity. Every node that receives that broadcast marks the uplink node as its parent node. These nodes then broadcast a signal. Every node that receives that signal, and has not yet identified a parent node, will record the signaling node as its parent and then broadcast to even more distant nodes. A cascade of parent nodes eventually covers the entire system.

Periodically, the network sends data through the system. Each node sends its sensor data to its parent node. That node sends the received data and its own data to its parent node until all the data are received by the uplink node, which converts the signal from acoustic to radio frequency and sends the information through the air to the command, or central, computer for display and evaluation.

The host node stores the sensor data from all the nodes in its memory preserving the identity of the node that produced the data so that water-monitoring personnel can track unusual readings or contaminants to their source location.

The researchers designed the nodes so that the chemical sensors are immersed in water separate from the communication electronics, making it easy to change the sensors on the nodes without having to alter the signaling network.


The National Science Foundation supported this work.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>