Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Awarded Grant To Create ’Artificial Rat Whisker’

07.03.2003


Scientists at the University of the West of England and the University of Sheffield have won funding to create a robotic system based on the whiskers of a rat.


The system would mimic the biological rat whisker and would provide an entirely new and groundbreaking modality for mobile robots working in confined spaces.

Known as ‘Whiskerbot’ the project will bring together experts in robotics from UWE with experts from Sheffield University who specialise in computer modelling of the brains of mammals.

The project aims to replicate many aspects of the way a rat’s whiskers work – it uses its whiskers to sense the location, closeness, size and texture of nearby objects and surfaces. The rat also sweeps its whiskers back and forth across surfaces and objects to gather information about form and texture. In fact, it could be claimed that whiskers are as important to rats as vision is to humans.



Dr Chris Melhuish who is leading the project for UWE says, “The ‘Whiskerbot’ will be an entirely new design unlike any of the ‘whiskers’ used on robots at the moment and it will have more of the features of the biological rat whisker. The rat’s whisker is like a long fingernail – it has no sensors in it but the whiskers allow the rat to sense its world and derive texture maps of its environment. It is important for the rat in finding its way around since it spends a lot of time in the dark.”

Dr Melhuish says the aim of developing this technology will be to provide mobile robots with a set of ‘whiskers’ like a rat’s which will have the ability to sense their environment: “A key application of this technology will be to provide mobile robots with a sensing ability which will enable them to work in confined spaces such as in narrow pipes or at the site of disasters like earthquakes where dust and smoke may mean poor visibility. These locations are often difficult and dangerous for people. In such environments a robot which could ‘feel its way’ using a rat-like whisker would be extremely useful.”

Robot autonomy is a key area of robot research at the internationally acclaimed Intelligent Autonomous Systems Lab (IAS Lab) at UWE. Chris continues, “The rat’s use of its whiskers may be more energy efficient than vision – and this could be an important factor in designing robots which are autonomous in terms of their energy needs.”

The IAS team will work closely with colleagues at Sheffield University who are experts on how the brain of the rat works. Dr Tony Prescott from the Adaptive Behaviour Research Group (ABRG) at the University of Sheffield says they are looking forward to collaborating on this exciting new project with UWE, “The rats whisker was chosen for the research project because the rat is one of the most studied creatures of the animal kingdom which means there is a great deal of scientific data available. It is crucial for the success of this project that we understand how the rat processes the data it receives through its whiskers, and this means we need an intimate understanding of how the rat’s brain works. This is the area in which the Adaptive Behaviour Research Group at Sheffield University excels and this will be complemented by the expertise of the robotocists at UWE. These two areas will complement each other in developing the artificial rat whisker.”

Jane Kelly | alfa
Further information:
http://info.uwe.ac.uk/news/UWENews/Default.asp?item=320

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>