Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Awarded Grant To Create ’Artificial Rat Whisker’

07.03.2003


Scientists at the University of the West of England and the University of Sheffield have won funding to create a robotic system based on the whiskers of a rat.


The system would mimic the biological rat whisker and would provide an entirely new and groundbreaking modality for mobile robots working in confined spaces.

Known as ‘Whiskerbot’ the project will bring together experts in robotics from UWE with experts from Sheffield University who specialise in computer modelling of the brains of mammals.

The project aims to replicate many aspects of the way a rat’s whiskers work – it uses its whiskers to sense the location, closeness, size and texture of nearby objects and surfaces. The rat also sweeps its whiskers back and forth across surfaces and objects to gather information about form and texture. In fact, it could be claimed that whiskers are as important to rats as vision is to humans.



Dr Chris Melhuish who is leading the project for UWE says, “The ‘Whiskerbot’ will be an entirely new design unlike any of the ‘whiskers’ used on robots at the moment and it will have more of the features of the biological rat whisker. The rat’s whisker is like a long fingernail – it has no sensors in it but the whiskers allow the rat to sense its world and derive texture maps of its environment. It is important for the rat in finding its way around since it spends a lot of time in the dark.”

Dr Melhuish says the aim of developing this technology will be to provide mobile robots with a set of ‘whiskers’ like a rat’s which will have the ability to sense their environment: “A key application of this technology will be to provide mobile robots with a sensing ability which will enable them to work in confined spaces such as in narrow pipes or at the site of disasters like earthquakes where dust and smoke may mean poor visibility. These locations are often difficult and dangerous for people. In such environments a robot which could ‘feel its way’ using a rat-like whisker would be extremely useful.”

Robot autonomy is a key area of robot research at the internationally acclaimed Intelligent Autonomous Systems Lab (IAS Lab) at UWE. Chris continues, “The rat’s use of its whiskers may be more energy efficient than vision – and this could be an important factor in designing robots which are autonomous in terms of their energy needs.”

The IAS team will work closely with colleagues at Sheffield University who are experts on how the brain of the rat works. Dr Tony Prescott from the Adaptive Behaviour Research Group (ABRG) at the University of Sheffield says they are looking forward to collaborating on this exciting new project with UWE, “The rats whisker was chosen for the research project because the rat is one of the most studied creatures of the animal kingdom which means there is a great deal of scientific data available. It is crucial for the success of this project that we understand how the rat processes the data it receives through its whiskers, and this means we need an intimate understanding of how the rat’s brain works. This is the area in which the Adaptive Behaviour Research Group at Sheffield University excels and this will be complemented by the expertise of the robotocists at UWE. These two areas will complement each other in developing the artificial rat whisker.”

Jane Kelly | alfa
Further information:
http://info.uwe.ac.uk/news/UWENews/Default.asp?item=320

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>