Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Awarded Grant To Create ’Artificial Rat Whisker’

07.03.2003


Scientists at the University of the West of England and the University of Sheffield have won funding to create a robotic system based on the whiskers of a rat.


The system would mimic the biological rat whisker and would provide an entirely new and groundbreaking modality for mobile robots working in confined spaces.

Known as ‘Whiskerbot’ the project will bring together experts in robotics from UWE with experts from Sheffield University who specialise in computer modelling of the brains of mammals.

The project aims to replicate many aspects of the way a rat’s whiskers work – it uses its whiskers to sense the location, closeness, size and texture of nearby objects and surfaces. The rat also sweeps its whiskers back and forth across surfaces and objects to gather information about form and texture. In fact, it could be claimed that whiskers are as important to rats as vision is to humans.



Dr Chris Melhuish who is leading the project for UWE says, “The ‘Whiskerbot’ will be an entirely new design unlike any of the ‘whiskers’ used on robots at the moment and it will have more of the features of the biological rat whisker. The rat’s whisker is like a long fingernail – it has no sensors in it but the whiskers allow the rat to sense its world and derive texture maps of its environment. It is important for the rat in finding its way around since it spends a lot of time in the dark.”

Dr Melhuish says the aim of developing this technology will be to provide mobile robots with a set of ‘whiskers’ like a rat’s which will have the ability to sense their environment: “A key application of this technology will be to provide mobile robots with a sensing ability which will enable them to work in confined spaces such as in narrow pipes or at the site of disasters like earthquakes where dust and smoke may mean poor visibility. These locations are often difficult and dangerous for people. In such environments a robot which could ‘feel its way’ using a rat-like whisker would be extremely useful.”

Robot autonomy is a key area of robot research at the internationally acclaimed Intelligent Autonomous Systems Lab (IAS Lab) at UWE. Chris continues, “The rat’s use of its whiskers may be more energy efficient than vision – and this could be an important factor in designing robots which are autonomous in terms of their energy needs.”

The IAS team will work closely with colleagues at Sheffield University who are experts on how the brain of the rat works. Dr Tony Prescott from the Adaptive Behaviour Research Group (ABRG) at the University of Sheffield says they are looking forward to collaborating on this exciting new project with UWE, “The rats whisker was chosen for the research project because the rat is one of the most studied creatures of the animal kingdom which means there is a great deal of scientific data available. It is crucial for the success of this project that we understand how the rat processes the data it receives through its whiskers, and this means we need an intimate understanding of how the rat’s brain works. This is the area in which the Adaptive Behaviour Research Group at Sheffield University excels and this will be complemented by the expertise of the robotocists at UWE. These two areas will complement each other in developing the artificial rat whisker.”

Jane Kelly | alfa
Further information:
http://info.uwe.ac.uk/news/UWENews/Default.asp?item=320

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>