Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers design system to improve disinfection of water used in food processing

27.02.2003


Georgia Institute of Technology researchers have developed a better-performing, less costly method of disinfecting water used in food processing.



Like current technologies, the new Advanced Disinfection Technology System relies on ultraviolet (UV) radiation to eliminate molds, viruses and bacteria. But the new system handles water more efficiently and thus improves the overall effectiveness of the disinfection process, researchers reported.

"We’re creating a mixing pattern to ensure that every particle of water is equally exposed to the (UV) lamp," said John Pierson, a senior research engineer at the Georgia Tech Research Institute and co-principal investigator. "By doing a better job of mixing the water, you get better disinfection."


Federal regulations require the disinfection of water used in food processing before it can be reused. In many cases, the lack of cost-effective disinfection means water is used only once and then discarded. When a disinfection system is used, the process is not always effective.

Most existing systems pump water through pipes lined with dozens of UV lamps. The lamps tend to foul quickly, reducing their effectiveness and requiring ongoing cleaning and replacement. More important, UV light has little penetrating power -- just about an inch -- so used water must be run through long pipes to increase the likelihood that UV light will contact enough of the liquid to affect the microorganisms it carries.

"Water right up against the lamp gets treated, and water farther away gets treated less -- or maybe not treated at all," explained Pierson, who is collaborating on the advanced disinfection system with Larry Forney, project director and an associate professor of chemical engineering at Georgia Tech.

The heart of the new advanced system is a pair of cylinders, one inside the other. The smaller cylinder rotates inside the stationary outer cylinder while water is pumped through the gap separating the two.

Inside the gap, the cylinder rotation causes water to churn and tumble in a well-documented phenomenon called a Taylor vortex. It’s actually a number of vortices, which mix water with light shining from four UV lamps embedded in the outside cylinder wall. UV light penetrates the water thoroughly, so no additional cycles through the system are necessary. Fewer UV lights are required compared to conventional systems, thus saving energy.

"Even if the fluid absorbs radiation, which would normally limit light penetration and thus the effectiveness of conventional UV reactors, the vortex motion in the new design continuously exposes fresh fluid to the radiation surface," Forney explained. "You bring the fluid in contact with just a few lamps in a repetitive basis."

The vortex motion also keeps the lamps free of material buildup.

The device is mechanically simple. Its low rate of revolution -- about one cycle per second -- means no bearings or special seals are required, Forney added.

The process was designed for recycling water from fruit and vegetable washing at food-processing plants, but it could be applied in other industrial processes.

"We think it could be useful for a number of water-treatment situations ranging from storm-water runoff to bottle washing to certain industrial-process water recycling applications," Pierson said. "It fits any application where you could use disinfected water rather than potable water, which would cut down on water use generally and conserve potable water in particular."

The disinfection process developed by Forney and Pierson may find uses far beyond the project’s original scope. Virtually anything that flows can run through the system, allowing for applications in the soft drink industry, brewing, dairy products and fruit juice processing. It would work for any kind of fluid for which there are concerns about the existence of pathogens, Forney explained. A non-thermal procedure, it could even supplant pasteurization, which is expensive, changes the taste and consumes a lot of energy, he added.

A variation of the device could even be developed for swimming pools as a non-chemical alternative to keeping water germ-free.

"If you were able to pass pool water through a UV reactor successfully, it would feel like normal water," Forney said. "It would have no taste and wouldn’t be irritating to your mouth, eyes and lungs."

Preliminary work with the new lab-scale UV disinfection device shows a reduction in the concentration of viable pathogens by a factor of more than 200, compared to existing technology with the same UV dosage, according to Carolyn Goodridge, a visiting postdoctoral fellow and member of the research team.

"We’re also beginning to work with certain kinds of fluids, such as fruit juices, that absorb lots of radiation to see what effect our device has on the inactivation of pathogens in that kind of environment," Forney added.



The research is sponsored by the state of Georgia through its Traditional Industries Program (TIP), a public-private partnership created by the General Assembly in 1994 to bring university-based research to bear on challenges faced by industry. TIP research and development for the food processing industry is coordinated through the Food Processing Advisory Council. In addition to the food processing industry, TIP also addresses industrywide issues in Georgia’s textile and carpet, and pulp and paper sectors.


For technical information, contact:
1. Larry Forney, School of Chemical Engineering, 404-894-2825 or larry.forney@che.gatech.edu
2. John Pierson, Georgia Tech Research Institute, 404-894-8059 or john.pierson@gtri.gatech.edu
3. Charles Estes, Economic Development and Technology Ventures, Georgia Tech, 404-894-6106 or charles.estes@edi.gatech.edu


Jane Sanders | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Process Engineering:

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>