Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers design system to improve disinfection of water used in food processing

27.02.2003


Georgia Institute of Technology researchers have developed a better-performing, less costly method of disinfecting water used in food processing.



Like current technologies, the new Advanced Disinfection Technology System relies on ultraviolet (UV) radiation to eliminate molds, viruses and bacteria. But the new system handles water more efficiently and thus improves the overall effectiveness of the disinfection process, researchers reported.

"We’re creating a mixing pattern to ensure that every particle of water is equally exposed to the (UV) lamp," said John Pierson, a senior research engineer at the Georgia Tech Research Institute and co-principal investigator. "By doing a better job of mixing the water, you get better disinfection."


Federal regulations require the disinfection of water used in food processing before it can be reused. In many cases, the lack of cost-effective disinfection means water is used only once and then discarded. When a disinfection system is used, the process is not always effective.

Most existing systems pump water through pipes lined with dozens of UV lamps. The lamps tend to foul quickly, reducing their effectiveness and requiring ongoing cleaning and replacement. More important, UV light has little penetrating power -- just about an inch -- so used water must be run through long pipes to increase the likelihood that UV light will contact enough of the liquid to affect the microorganisms it carries.

"Water right up against the lamp gets treated, and water farther away gets treated less -- or maybe not treated at all," explained Pierson, who is collaborating on the advanced disinfection system with Larry Forney, project director and an associate professor of chemical engineering at Georgia Tech.

The heart of the new advanced system is a pair of cylinders, one inside the other. The smaller cylinder rotates inside the stationary outer cylinder while water is pumped through the gap separating the two.

Inside the gap, the cylinder rotation causes water to churn and tumble in a well-documented phenomenon called a Taylor vortex. It’s actually a number of vortices, which mix water with light shining from four UV lamps embedded in the outside cylinder wall. UV light penetrates the water thoroughly, so no additional cycles through the system are necessary. Fewer UV lights are required compared to conventional systems, thus saving energy.

"Even if the fluid absorbs radiation, which would normally limit light penetration and thus the effectiveness of conventional UV reactors, the vortex motion in the new design continuously exposes fresh fluid to the radiation surface," Forney explained. "You bring the fluid in contact with just a few lamps in a repetitive basis."

The vortex motion also keeps the lamps free of material buildup.

The device is mechanically simple. Its low rate of revolution -- about one cycle per second -- means no bearings or special seals are required, Forney added.

The process was designed for recycling water from fruit and vegetable washing at food-processing plants, but it could be applied in other industrial processes.

"We think it could be useful for a number of water-treatment situations ranging from storm-water runoff to bottle washing to certain industrial-process water recycling applications," Pierson said. "It fits any application where you could use disinfected water rather than potable water, which would cut down on water use generally and conserve potable water in particular."

The disinfection process developed by Forney and Pierson may find uses far beyond the project’s original scope. Virtually anything that flows can run through the system, allowing for applications in the soft drink industry, brewing, dairy products and fruit juice processing. It would work for any kind of fluid for which there are concerns about the existence of pathogens, Forney explained. A non-thermal procedure, it could even supplant pasteurization, which is expensive, changes the taste and consumes a lot of energy, he added.

A variation of the device could even be developed for swimming pools as a non-chemical alternative to keeping water germ-free.

"If you were able to pass pool water through a UV reactor successfully, it would feel like normal water," Forney said. "It would have no taste and wouldn’t be irritating to your mouth, eyes and lungs."

Preliminary work with the new lab-scale UV disinfection device shows a reduction in the concentration of viable pathogens by a factor of more than 200, compared to existing technology with the same UV dosage, according to Carolyn Goodridge, a visiting postdoctoral fellow and member of the research team.

"We’re also beginning to work with certain kinds of fluids, such as fruit juices, that absorb lots of radiation to see what effect our device has on the inactivation of pathogens in that kind of environment," Forney added.



The research is sponsored by the state of Georgia through its Traditional Industries Program (TIP), a public-private partnership created by the General Assembly in 1994 to bring university-based research to bear on challenges faced by industry. TIP research and development for the food processing industry is coordinated through the Food Processing Advisory Council. In addition to the food processing industry, TIP also addresses industrywide issues in Georgia’s textile and carpet, and pulp and paper sectors.


For technical information, contact:
1. Larry Forney, School of Chemical Engineering, 404-894-2825 or larry.forney@che.gatech.edu
2. John Pierson, Georgia Tech Research Institute, 404-894-8059 or john.pierson@gtri.gatech.edu
3. Charles Estes, Economic Development and Technology Ventures, Georgia Tech, 404-894-6106 or charles.estes@edi.gatech.edu


Jane Sanders | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>