Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expendable microphones may help locate building collapse survivors

30.01.2003


Data gathered by Penn State engineers in a volunteer effort at the World Trade Center tragedy, suggests that simple, inexpensive microphones dropped into the rubble of a collapsed building may be able to aid search and rescue teams despite ground level noise.

Dr. Thomas B. Gabrielson, associate professor of acoustics and senior research associate at Penn State’s Applied Research Laboratory, says, "In conventional survivor searches, noise generating activities at the surface must be stopped while listening for survivors."

However, the Penn State team found that the noise level in the interior voids of the rubble was about the same as that of a quiet residential neighborhood even though the noise level at the surface was much higher due to constant operation of three heavy lift cranes, air hammers, and dozens of rescuers workers.



"Our results suggest that if expendable microphones were dropped or thrown into the voids in a building collapse, the sounds from trapped survivors would be louder and the surrounding noise quieter so that acoustic search could be continued without interfering with other operations," Gabrielson says.

Since the Penn State team made their measurements, they have developed small wireless microphones in hardened packages that can be thrown into areas too dangerous for people to enter.

The Penn State engineer adds, "Our goal is to provide a small, light, easy- to -use and expendable tool that doesn’t burden the rescuer with bulky, complicated equipment. "

The researchers described their measurements and findings in the current issue (January) of the Journal of the Acoustical Society of America. The authors are Gabrielson, Matthew Poese, doctoral candidate in acoustics, and Dr. Anthony Atchley, professor of acoustics and head of the Penn State Acoustics Program.

The Penn State team listened to and recorded signals Sept. 18 at the edge of the rubble pile on the northwest corner of the heavily damaged Bankers Trust building.

The researchers write, "These results support the strategy of lowering microphones into collapsed structures in addition to listening for survivor signals from the surface. Placing the microphone in voids in the collapsed structure reduces much of the surface-produced airborne noise."

The Office of Naval Research has provided continuing support for the development of acoustic systems at Penn State’s Applied Research Laboratory (ARL) and the resulting ARL infrastructure made the team’s acoustic survivor search effort possible.

| EurekAlert!

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>